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Abstract. Recently, it has been established that the problem of power factor compensation for nonlinear loads with nonsinusoidal source voltage can
be recast in terms of the property of cyclodissipativity. The purpose of this brief note is to review and to illustrate the application of this framework to
the practical of passive reactive compensation of linear loads with a nonsinusoidal source voltage. We give criteria for determining the optimal values
of the compensator parameters that depend of the spectral line of load susceptance and voltage source.

Streszczenie. Stwierdzono ostatnio, że problem poprawy współczynnika mocy odbiorników nieliniowych zasilanych napiȩciem niesinusoidalnym
może być rozpatrywany z punktu widzenia cyklo-rozpraszania (cyclodissipativity). Celem tego artykułu jest przegla֒d i pokazanie zastosowania
takiego podejścia przy bezstratnej kompensacji odbiorników liniowych zsilanych napiȩciem niesinusoidalnym. Podane zostały kryteria do określenia
optymalnych wartości parametrów kompensatora, które zależa֒ od charakterystyki widmowej susceptancji obcia֒żenie i źródła napiȩcia. (Poprawa
współczynnika mocy filtrami bezstratnymi w warunkach nieliniowych i niesinusoidalnych)
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Słowa kluczowe: Kompensacji współczynnika mocy; sieć nieliniowych; warunkach niesinusoidalnych.

Introduction

Optimizing energy transfer from an alternating current

(ac) source to a load is a classical problem in electrical engi-

neering. In practice, the efficiency of this transfer is typically

reduced due to the phase shift between voltage and current

at the fundamental frequency. The power factor captures the

energy-transmission efficiency for a given load. The standard

approach to improving the power factor is to place a compen-

sator between the source and the load.

The effectiveness of capacitive compensation in systems

with nonsinusoidal voltages and currents has been widely

studied by [1, 2] and [3]. Unfortunately, in [4] it has been

illustrated that the capacitive compensation may not be effec-

tive for non-sinusoidal voltages. Therefore, a more complex

compensator than only a capacitor is required for the reactive

power minimization in such situations.

Recently, in [5] it has been established that the classical

problem is equivalent to imposing the property of cyclodis-

sipativity to the source terminals. Since this framework is

based on the cyclodissipativity property, see [6, 7], the im-

provement of the power factor (PF) is done independent of

the reactive power definition, which is a matter of discus-

sions in the power community, see for instance [8] and its

references. Most of the approaches used to improve the PF

are based on different power definitions and a lack of a uni-

fied definition of reactive power produces misunderstanding

of power phenomena in circuits with nonsinusoidal voltages

and currents, [9]. Similarly, the task of designing compen-

sators that aim at improving the PF for nonlinear time-varying

loads operating in non-sinusoidal regimes is far from clear.

Using the cyclodissipativity framework the classical ca-

pacitor and inductor compensators were interpreted in terms

of energy equalization, see [5] for more details. And we have

presented an extension of this result in [10] where we consid-

ered arbitrary lossless linear time invariant (LTI) filters, and

proved that for general lossless LTI filters the PF is reduced

if and only if a certain equalization condition between the

weighted powers of inductors and capacitors of the load is

ensured.

Here we illustrate the application of this framework to the

passive compensation of linear loads with a non-sinusoidal

source voltage. We give criteria for improvement of PF with

linear capacitors, LC filters, which determine the optimal val-

ues for the compensator parameters that depend of the spec-

tral line of load susceptance and voltage source.

Cyclodissipativity of RLC nonlinear networks

In order to make this paper self-contained, the purpose

of this section is to briefly review the meaning of cyclodissi-

pativity, [6, 7], and some of its connections with the nonlinear

circuit theory. Although the dissipativity theory applies to a

wider classes of systems, let us consider dynamical systems

modeled by ordinary differential equations:

Definition 1 (Input-State-Output Representation). The input-

state-output representation of the dynamical systems H :
U → Y , is of the form

(1)
ẋ = f (x, u) , x ∈ X ⊂ R

m

y = g (x, u) , u ∈ U ⊂ R
n, y ∈ Y ⊂ R

n,

where f : X × U → R
n and g : X × U → Y are vector

functions of class Ck, with 0 < k < ∞. Let X be the set of

reachable and controllable points. Furthermore, assume that

system (1), for u = 0, has an equilibrium point in x = 0. That

is, f (0, 0) = 0 and g (0, 0) = 0.

The definition of cyclodissipativity involves a function

called supply rate w : U × Y → R, which is locally inte-

grable for every u ∈ U , [6].

Definition 2 (Cyclodissipativity). We say that the system H
is cyclodissipative on X with the supply rate w (u, y) if there

exists a function S, called storage function, such that

(2) S (x (t0)) +

∫ t1

t0

w (u (t) , y (t)) dt ≥ S (x (t1)) ,

is satisfied for all u ∈ U and all t0 < t1, such that x (t) ∈ X
for all t ∈ [t0, t1].

The inequality (2) is similar to the usual dissipation in-

equality where additionally it is required that S ≥ 0, and

which expresses that the increase in energy stored cannot

be larger than the energy supplied from the outside. Fur-

thermore, if the system H does not produce energy at any

time, namely that the energy stored from the system is finite,

S(x) ≥ 0 for all x ∈ X , then the system is called dissipative.

Typical examples of dissipative systems are: passive elec-

trical networks, mechanical systems, viscoelastic materials,

etc.

However, if we consider an electrical network with ac-

tive elements, namely negative resistors, tunnel diodes, etc.,

then the interpretation of (2) leads to some difficulties be-

cause the storage energy function needs in general not be

bounded from below or above. This merely involved a gen-

eralization of the concept of a dissipative system to that of
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a cyclodissipative system1. The concept of cyclodissipativity

is inspired by the fact that cyclodissipative systems exhibit

a dissipative behavior in cyclic motions. However, normally,

autonomous systems cannot exhibit periodic (or recurrent)

motions. Hence, we restrict the set of inputs of interest to

those inputs that generate periodic trajectories, and we con-

sequently define the following signal space.

Definition 3. Let Ln
2 be the signal space defined by Ln

2 :=
{

x : [0, T ) → R
n : ‖x‖2 := 1

T

∫ T

0
|x(τ)|2dτ < ∞

}

, where

‖ · ‖ is the rms value, | · | is the Euclidean norm and the inner

product in Ln
2 is defined as 〈x, y〉 := 1

T

∫ T

0
x⊤(t)y(t)dt.

We thus arrive at the following lemma:

Lemma 1 (Cyclodissipativity). Given a mapping w : Ln
2 ×

Ln
2 → R. The system H is cyclodissipative with respect to

the supply rate w(u, y) if and only if

(3)

∫ T

0

w(t)dt ≥ 0.

for all T ≥ 0, and u ∈ Ln
2 wherever x(0) = x(T ).

Remark 1. In words, a system is cyclodissipative when it can

not create (abstract) energy over closed paths in the state-

space. It might, however, produce energy along some initial

portion of such a trajectory; if so, it is only cyclodissipative

and not dissipative.

Nvs1

is1

isn

vsn

vs2

is2

Fig. 1. Illustrating power delivered to a (possibly nonlinear and time
varying) load from an n-phase ac ideal generator.

For instance, consider the n-port network N of Figure 1

consists of arbitrary interconnection of nL inductors, nC ca-

pacitors with nR passive resistors. From the principle of con-

servation of energy, regardless of the nature of the elements

or the excitation, the instantaneous rate of energy transfer or

instantaneous power at the input terminal is equal to

n
∑

p=1

ispvsp =

nL
∑

α=1

iLα
vLα

+

nC
∑

β=1

iCβ
vCβ

+

nR
∑

γ=1

iRγ
vRγ

,

where we have adopted the standard sign convention for the

(instantaneous) supplied power i⊤s vs, which can be rewritten

as,

(4)

n
∑

p=1

ispvsp =
dE
dt

+ i⊤RvR,

1As explained in [6], cyclodissipativity is understood here in terms
of the available generalized energy. The idea is borrowed from ther-
modynamics, where the notion is formulated in a conceptually clearer
manner than in circuits and systems theory.

where

(5) E(t) :=
nL
∑

α=1

ELα
(t) +

nC
∑

β=1

ECβ
(t)

represents the total stored energy in the network. Time-

integration of (4) over the interval [t0, t1] yields

(6)
∫ t1

t0

i⊤s (τ)vs(τ)dτ = E(t1)− E(t0) +
∫ t1

t0

i⊤R(τ)vR(τ)dτ.

Let us assume that all resistors are passive, namely

the instantaneous dissipated power is always positive

i⊤R(t)vR(t) ≥ 0 for all t ∈ [t0, t1], then we obtain the dis-

sipation inequality,

(7) E(t0) +
∫ t1

t0

i⊤s (τ)vs(τ)dτ ≥ E(t1),

which verifies for all t1 ≥ t0. Indeed, we can conclude the

following result.

Proposition 2. A n-port network N consists of arbitrary in-

terconnection of nL inductors, nC capacitors with nR passive

resistors verify the dissipation inequality (7) for all t1 ≥ t0
and, therefore, N is cyclodissipative with respect to the sup-

ply rate w(us, is) = i⊤s (·)vs(·) and the storage function is

the total stored energy (5).

A cyclodissipativity characterization of power factor

compensation

This section introduces the identification of the key role

played by cyclodissipativity in power factor compensation.

We consider the energy transfer from an n-phase ac

generator to a load, see Figure 1. The voltage and current of

the source are denoted by the column vectors vs(t), is(t) ∈
R

n and the load is described by a (possibly nonlinear and

time varying) n-port network N. We make the following as-

sumption.

Assumption 1. All signals are assumed to be periodic,

x(t) = x(t + T ), and have finite power, that is, they belong

to Ln
2 .

Assumption 2. The source is ideal2, in the sense that vs
remains unchanged for all loads Yℓ.

The universally accepted definition of PF is given as [11]:

Definition 4 (Power factor). The PF of the source is defined

by

(8) PF :=
P

S
,

where

(9) P := 〈vs, is〉,

is the active real power, also equal to average power [12],

and S := ‖vs‖‖is‖ is the apparent power.

From (8) and the Cauchy–Schwartz inequality, it fol-

lows that P ≤ S. Hence PF ∈ [−1, 1] is a dimension-

less measure of the energy-transmission efficiency. Cauchy–

Schwartz also tells us that a necessary and sufficient condi-

tion for the apparent power to equal the active power is that

vs and is are collinear. If this is not the case, P < S and

compensation schemes are introduced to maximize the PF.

2Under Assumption 2, the apparent power S is the highest aver-
age power delivered to the load among all loads that have the same
rms current ‖is‖.
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Fig. 2. Schematic diagram of shunt PF compensation configuration.

The PF compensation configuration considered in the

paper is depicted in Figure 2, where Yc, Yℓ : Ln
2 → Ln

2
are the admittance operators of the compensator and the

load, respectively. That is, ic = Yc(vs), iℓ = Yℓ(vs) where

ic,iℓ ∈ Ln
2 , are the compensator and load currents, respec-

tively. In the simplest LTI case the operators Yc, Yℓ can be

described by their admittance transfer matrices, which we

denote by Ŷc(s), Ŷℓ(s) ∈ R
n×n(s), respectively, where s

represents the complex frequency variable s = jω.

The uncompensated PF, that is, the value of PF when

Yc = 0, is clearly given by

(10) PFu :=
〈vs, iℓ〉
‖vs‖‖iℓ‖

,

where is = iℓ.
Definition 5 (Power factor improvement). For a given com-

pensator Yc. Power Factor Improvement is achieved if and

only if

(11) PF > PFu.

Following standard practice, we consider only lossless

compensators, that is,

Definition 6 (Lossless compensator). The power-factor

compensator is lossless if

(12) 〈Yc(vs), vs〉 = 0, ∀vs ∈ Ln
2 .

Furthermore, if Yc is LTI, this is equivalent to

(13) Re{Ŷc(jω)} = 0,

for all ω ∈ R for which jω is not a pole of Ŷc(jω), where

Re{Ŷc(jω)} is the real part of the admittance transfer matrix

Ŷc(jω).
The following results from [5] are repeated here for con-

venience to place our results in context.

Proposition 3. Consider the system of Figure 2 with fixed

Yℓ. The compensator Yc improves the PF if and only if the

system is cyclodissipative with respect to the supply rate

(14) w(vs, is) := (Yℓ(vs) + is)
⊤(Yℓ(vs)− is).

The proof follows from (12) and the fact the compensator

is lossless.

Remark 2. Notice that we use scattering variables where the

elements of U denote the magnitude of the incident wave and

those of Y the magnitude of the reflected wave. The function

w the equals ‖u‖2 − ‖y‖2, i.e., the difference of the power

in the incident wave and the reflected wave with u = iℓ and

y = is, where S still denotes the stored energy.

The next result follows from Proposition 3 and it charac-

terizes the set of all compensators Yc that improve the power-

factor for a given Yℓ.

Corollary 4. Consider the system of Figure 2 Then Yc im-

proves the PF for a given Yℓ if and only if Yc satisfies

(15) 2〈Yℓ(vs), Yc(vs)〉+ ‖Yc(vs)‖2 < 0, ∀vs ∈ Ln
2 .

Dually, given Yc, the PF is improved for all Yℓ that satisfy (15).

Weighted power equalization renders into power factor

improvement

In this section we extend Proposition 5 in [5], where the

PF compensators are assumed to be capacitors or inductors,

to general lossless LTI filters.

We assume that the load is a nonlinear RLC circuit con-

sisting of lumped dynamic elements (nL inductors, nC ca-

pacitors) and static elements (nR resistors). Capacitors and

inductors are defined by the physical laws and constitutive

relations [12]:

(16) iC = q̇C , vC = ∇HC(qC),

(17) vL = φ̇L, iL = ∇HL(φL),

respectively, where iC , vC , qC ∈ R
nC are the capacitors

currents, voltages and charges, and iL, vL, φL ∈ R
nL

are the inductors currents, voltages and flux–linkages, HL :
R

nL → R is the magnetic energy stored in the inductors,

HC : RnC → R is the electric energy stored in the capac-

itors, and ∇ is the gradient operator. We assume that the

energy functions are twice differentiable and for linear capac-

itors and inductors, HC(qC) =
1
2q

⊤
CC

−1qC , and HL(φL) =
1
2φ

⊤
LL

−1φL, respectively, with L ∈ R
nL×nL , C ∈ R

nC×nC .

To avoid cluttering the notation we assume L,C are diagonal

matrices.

Finally, we distinguish between two sets of nonlinear static

resistors: nRi
current–controlled resistors and nRv

voltage–

controlled resistors, for which the characteristics are given by

the following one-to-one real-valued functions:

(18) vRi
= v̂Ri

(iRi
),

(19) iRv
= îRv

(vRv
),

respectively, where iRi
, vRi

∈ R
nRi are the currents, volt-

ages of the current-controlled resistors, and iRv
, vRv

∈
R

nRv are the currents, voltages of the voltage-controlled re-

sistors, with nR = nRi
+ nRv

.

Recalling the definition of real power (9) we introduce the

following.

Definition 7. (Weighted averaged power) Given a compen-

sator admittance Yc the weighted averaged power (WAP) of

a single–phase circuit with port variables (v, i) ∈ L2 ×L2 is

given by

(20) Pw := 〈Yc(v), i〉.
If Yc is LTI

(21) Pw =

∞
∑

k=−∞
Ŷc[k]V̂ [k]Î∗[k]

where V̂ [k], Î[k] are the k-th spectral lines of v and i, re-

spectively, and Ŷc[k] := Ŷc(kω0), with ω0 := 2π
T

.

Remark 3. WAP is the sum of the power components of the

circuit modulated by the frequency response of Yc—hence

the use of the “weighted” qualifier. Moreover, since the spec-

tral lines of real signals satisfy F̂ [−k] = F̂ ∗[k], the weighted

power is a real number.
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The aforementioned definition motivates the next lemma.

Lemma 5. Consider a nonlinear time invariant (TI) current-

controlled {voltage-controlled} one-port resistor character-

ized by (18) {(19)} and a fixed LTI lossless compensator Yc

with n = 1. Let Ŷc(jω) denote the associated admittance

transfer function. If Ŷc(jω) has a zero at the origin, then the

weighted averaged power, along periodic trajectories,

(22) Pw
Ri

:= 〈YcvRi
, iRi

〉 = 0,

{Pw
Rv

:= 〈YcvRv
, iRv

〉 = 0} for all admissible pair

(vRi
, iRi

) ∈ L2 × L2 {(vRv
, iRv

) ∈ L2 × L2}, and for

all ω ∈ R for which jω is not a pole of Ŷc(jω).
The proof is given in [14]. Lemma 5 suggests that the

composition of an one-port resistor and a fixed one-port LTI

defines a 1-port for which, in the case of periodic signals, the

voltage and current are orthogonal to one another.

The following proposition gives the relation between WAP

equalization and power-factor improvement by LTI lossless

filters.

Proposition 6. Consider the system of Figure 2 with n = 1,3

a nonlinear RLC load, with linear resistors, and a fixed LTI

lossless compensator Yc with admittance transfer function

Ŷc(s).
i) PF is improved if and only if

(23)
1

2
V w
s +

nL
∑

q=1

Pw
Lq

+

nC
∑

q=1

Pw
Cq

< 0

where V w
s is the rms value of the filtered voltage source, that

is,

V w
s := ||Ycvs||2 =

∞
∑

k=1

|Ŷc(k)V̂s(k)|2,

and

Pw
Cq

:=

∞
∑

k=−∞
Ŷc[k]V̂Cq

[k]Î∗Cq
[k]

Pw
Lq

:=
∞
∑

k=−∞
Ŷc[k]V̂Lq

[k]Î∗Lq
[k],

are the weighted powers of the q–th capacitor and inductor,

respectively.

ii) Condition (23) may be equivalently expressed as

(24)
〈(

1
p
Yc

)

vL,∇2HLvL

〉

−
〈

iC , (
1
p
Yc)∇2HCiC

〉

> 1
2V

w
s

where p := d
dt

.

iii) If the capacitors and inductors are linear their weighted

powers become

Pw
Cq

:= 2ω0

∞
∑

k=1

{

k Im{Ŷc[k]}
nC
∑

q=1

Cq|V̂Cq
[k]|2

}

(25)

Pw
Lq

:= −2ω0

∞
∑

k=1

{

k Im{Ŷc[k]}
nL
∑

q=1

Lq|ÎLq
[k]|2

}

.

where Im{Ŷc[k]} is the imaginary part of the admittance

transfer function Ŷc[k].
iV) Furthermore, the results i-iii can be extended for load

3This condition is imposed, without loss of generality, to simplify
the presentation of the result.

with nonlinear TI resistors, if the admittance transfer func-

tion Ŷ (jω) of the LTI lossless compensator has a zero at the

origin.

The proof, which follows from Lemma 5 and the gener-

alized form of Tellegen’s theorem [13], is given in complete

detail in [14].

Remark 4. Condition (23) indicates that the PF will be im-

proved if and only if the overall weighted power (supplied plus

stored) is negative.

Remark 5. From (24) (or replacing (25) in (23)) we see

that PF improvement is equivalent to average power equal-

ization between inductors and capacitor—notice the minus

signs—with the gap being determined by the weighted sup-

plied power.

Application of the framework

In this section, we focus our attention to the PFC of LTI

loads by the use of a passive filter.

Consider an one-port N with linear passive resistors,

inductors, and capacitors supplied by a periodic nonsinu-

soidal voltage source vs(t). Considering periodicity, we

can express the voltage source in terms of its (exponen-

tial) Fourier series as vs(t) =
∑∞

k=−∞ V̂s(k) exp(jkω0t),
where ω0 := 2π/T is the fundamental frequency and, for

integers k, V̂s(k) := 1
T

∫ T

0
vs(t) exp(−jkω0t)dt are the

Fourier coefficients of the voltage source, also called spec-

tral line or harmonics.

The LTI load Yℓ can be characterized in terms of the

associated admittance, specified by its conductance G[k]
and susceptance B[k] for the kth order harmonic, namely

Ŷℓ[k] = G[k] + jB[k]. Additionally, it can be expressed in

terms of the magnetic and electric energies of the kth har-

monic as

(26)
Ŷℓ[k] =

2P (kω0)

|V̂s[k]|2
+ j kω0

|V̂s[k]|2

{

∑nC

q=1 Cq|V̂Cq
[k]|2

− ∑nL

q=1 Lq|ÎLq
[k]|2

}

where P (kω0) = 1
2

∑nR

p=1 GRp
[k]|V̂Rp

|2, V̂ [k] is the kth

spectral line of vs(t), and V̂Cq
[k], ÎLq

[k] are the spectral

lines of the qth capacitor voltage and inductor current.

From the Proposition 6, for LTI loads and a given com-

pensator Yc, we have that PF > PFu if and only if the fol-

lowing inequality verify

nL
∑

q=1

Pw
Lq

+

nC
∑

q=1

Pw
Cq

+
1

2
V w
s < 0

or, by Claim 3 of the proposition,

2ω0

∞
∑

k=1

kIm{Ŷc[k]}
{

nC
∑

q=1

Cq|V̂Cq
[k]|2 −

nL
∑

q=1

Lq|ÎLq
[k]|2

}

+
∞
∑

k=1

|Ŷc[k]V̂s[k]|2 > 0

and, in comparison with (26), we obtain the following

(27)
∞
∑

k=1

|Ŷc[k]V̂s[k]|2 + 2ω0

∞
∑

k=1

kIm{Ŷc[k]}B[k]|V̂s[k]|2 < 0.

A. Maximum power factor for LIT load by capacitive com-

pensator

A typical industrial approach for maximizing PF is sought

for the connection of a variable, lossless capacitor C in par-
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allel with the load. The capacitive compensation in systems

with nonsinusoidal voltages and currents has been widely

studied, for instance [1, 2, 3] and [4]. In a similar way, con-

sider that the compensator as Ŷc(s) = sC in (27). Further-

more, if power-factor improvement is possible, the optimal

value of the capacitance is obtained as follow. So, from (27)

we define the function:

(28)

f(C) = C2
∞
∑

k=−∞
(kω0)

2|V̂s[k]|2+2ω0C
∞
∑

k=−∞
kB[k]|V̂s[k]|2.

The problem becomes on optimization problem, i.e., the op-

timal values of the unknown C that minimize the right side of

the inequality (27) which has the minimizer

(29) Copt =
−
∑+∞

−∞ kω0B[k]|V̂s[k]|2
∑+∞

−∞ k2ω2
0 |V̂s[k]|2

.

This result is also obtained in [5] and for vs(t) = Vs sinω0t
in [3].

However, the capacitive compensation may not be ef-

fective for distorted voltage, [4]. Therefore, alternative circuit

topologies are studied in the circuits literature [2] but there

seem to be many open problems for this solution. For in-

stance, in [4] and [15], it is shown that for RL loads the optimal

solution for parallel shunt LC compensator corresponds to a

negative inductance, and thus a switched series LC circuits

is suggested as an alternative solution. Furthermore, as it is

shown in [3], if the supply bus has not an infinite power then a

shunt reactive compensator changes the load voltage. This

change could be particularly high when the resonance be-

tween the compensator and the supply source occurs in the

systems. Indeed, usually it is the resonance between capac-

itance of the compensator and the inductance of the supply

source. Moreover, in the practical applications most of the

loads present impedance RL type, which increases with the

frequency. Consequently, a circuit with a such load supplied

from an inductive source and compensated by a capacitor

behaves in the range of frequency ω ≫ ω0, see Fig. 3.

vs

ju

Zs

C

is

Fig. 3. Equivalent circuit of compensated load for ω ≫ ω1 where
a current source j represents the harmonics generated by the load
and Zs = jωLs is the inductive impedance of the source.

The Load to Distribution Voltage (L/VD) transmittance,

which expresses dependence of the load voltage on fre-

quency in the circuit with a voltage resonance, is given by

U(jω)

Vs(jω)
=

1

1− ω2LsC
=

1

1−
(

ω
ωr

)2

where ωr = 1√
LsC

is the resonant frequency. The bode plot

of the magnitude of the L/VD transmittance A(jω) is shown

in Fig. 4. We observe that the magnitude of L/VD transmit-

tance is higher than zero for frequency ω such (ω/ωr)
2 < 2.

It means that all distribution voltage harmonics of the fre-

quency below
√
2ωr are amplified by the compensator. This

amplification increases to infinity at resonant frequency.
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Fig. 4. Bode plot of L/DV transmittance versus relative frequency
ω/ωr

From the above shown, previously pointed out in [3], the

capacitive compensation in systems with nonsinusoidal volt-

ages and currents could contribute to an increase of voltage

and current distortion and have low effectiveness. In addi-

tion, a possible total compensation of reactive power usually

requires a compensator built of a high number of reactive

components. Hence, such requirement could be fulfilled by

the LC compensator shown in Fig. 5. Furthermore, a se-

ries LC compensator does not increase waveform distortion

and it can be assumed that the voltage harmonics are not af-

fected by the compensator if L and C are selected such that

frequency range of amplification is below the 2nd, i.e.,

1
√

(Ls + L)C
<

√
2ω0,

where ω0 is fundamental frequency.
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Fig. 5. Series LC-Compensation of Linear Network.

B. Maximum power factor for LIT load by series LC com-

pensator

In [5] and [16] the PF improvement by cyclodissipativity

condition was presented, but the improvement had been car-

ried out by either capacitive or inductive compensation. Now,

we consider for the power factor improvement of a linear load

by a series LC compensator based on cyclodissipativity, see

Fig. 5. We outline the calculations. By the Corollary 7 we

have that series LC compensation improves the power fac-

tor, PF > PFu, if and only if

0 >

∞
∑

k=−∞

(

kω0C

1− k2ω2
0LC

)2

|V̂s[k]|2

+2

∞
∑

k=−∞

kω0C

1− k2ω2
0LC

B(kω0)|V̂s[k]|2
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where, the admittance transfer function of the compensator

is given by

Ŷc(jω) =
jωC

1− ω2LC
,

and C and L are the capacitance and inductance, resp.

In order to find the optimal values of the unknown C and

L, we define the function

(30)
f(L,C) =

∑∞
k=−∞

(

kω0C
1−k2ω2

0
LC

)2

|V̂s[k]|2

+2
∑∞

k=−∞
nω0C

1−k2ω2

0
LC

B[k]|V̂s[k]|2.

By assuming that Ls << L. The series inductance L must

be selected such that the frequency range of amplification is

below the 2nd order harmonic, i.e. 1√
LC

<
√
2ω0, with ω0

is the fundamental frequency. Hence we define the following

constraint

(31) g(L,C) =
1√
LC

−
√
αω0 = 0.

with 0 < α < 2 and k 6= 1.

Therefore, the problem becomes to find the local critical

points of f restricted to S, and let S be the level set for g
with value 0. By the method of Lagrange Multiplier and con-

sidering c = 0 we have f restricted to S which has a local

minimum on S at

(32) Copt =

∑∞
k=−∞

nω0

1− k2

α

X(kω0)
R2(kω0)+X2(kω0)

|V̂s[k]|2
∑∞

k=−∞
k2ω2

0

(1− k2

α
)2
|V̂s[k]|2

and, using the constrain g(L,C) = 1/
√
LC −√

αω0 = 0,

(33) Lopt =
1

αω2
0Copt

,

where the susceptance B(kω0) is given by

B[k] =
−X(kω0)

R2(kω0) +X2(kω0)
.

An analogous result can be found for parallel LC compen-

sators. We now apply our result to an example system, [1].

Example 1. A periodic nonsinusoidal voltage given by vs =√
2[200 sinω0t + 200 sin(5ω0t + 30◦)] is applied to a se-

ries, linear, resistance-inductance load with resistance 4 Ω
and fundamental frequency reactance 10 Ω. Consider the

fundamental frequency as f1 = 50 Hz.

The uncompensated circuit has the power factor PFu =
0.27. From (29), the optimum capacitance that will give maxi-

mum power factor has the value Copt = 22.8µF . The Power

Factor after compensation is PF = 0.292. This result is the

same as in [1]. The degree of the power factor improve-

ment from 0.27 to 0.292 is seen to be very small. This is

typical for circuits in which the voltage is grossly nonsinu-

soidal, see [1] for more cases. The optimal capacitor and

inductor given by LC compensation, e.i. (32) and (33), resp.,

are Copt = 124.4µF and Lopt = 40.7mH , yielding an im-

proved power factor PF = 0.4987, with k = 1.999. The

power factor can be increased to a value which is approxi-

mately twice as high as the uncompensated power factor.

Conclusions

In this paper, extensions to the analysis of power factor

compensation of nonsinusoidal networks based on cyclodis-

sipativity were presented. We have studied the concept of cy-

clodissipativity property of electrical circuits and showed that

the power factor by general LTI compensators is improved

if and only if a certain equalization condition between the

weighted powers of compensator and load is ensured. Based

on this condition, we have given criteria for improvement of

PF with linear capacitors and LC filters. These criteria de-

termine the optimal values for the compensator parameters.

The analysis is carried out for the general periodic and non-

sinusoidal supply voltage. Although we only study the linear

case, this can be done for a nonlinear one as well.
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Supélec, Gif-sur-Yvette, France,email: ortega@lss.supelec.fr

PRZEGLA֒D ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R.87 NR 1/2011 117


