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Abstract. We present the feature discovery technique based on the use of the probabilistic dissimilarity, i.e., a measure of dissimilarity between
two probability distributions. The solutions in the field of feature discovery, generally, fall into feature extraction and feature selection methods. Both
of these groups form the feature subset on the basis of the initial feature set. Also, both of the groups use the numeric representations of features,
what often can be misleading, since the different physical meaning of different features can be lost, when they are all treated only as numbers. The
approach we propose does not require the initial feature set. Moreover, it does not require the numeric representation of the features. Instead, we
propose using only one numeric, decimal quantity allowing for effective feature discovery. We demonstrate that taking advantage of the probabilistic
dissimilarity during the feature retrieval phase can benefit by discovering relevant features. We show the way to create a probabilistic model of the
analyzed data set, required for the use of the proposed technique. Finally, we report the experimental results of application of the feature discovery
method introduced in this paper to the game of chess.

Streszczenie. Przedstawiamy technikę odkrywania cech wykorzystuj ąc ą pseudoodległość probabilistyczn ą, będ ąc ą miar ą podobieństwa pomiędzy
dwoma rozkładami prawdopodobieństwa. Rozwi ązania zaproponowane w dziedzinie odkrywania cech mog ą być w ogólności podzielone na metody
ekstrakcji i selekcji cech. Obie te grupy metod formuj ą podzbiór cech na podstawie pocz ątkowego zbioru cech. Obie te grupy wykorzystuj ą również
reprezentacje liczbowe cech, co często może być myl ące, gdyż różne znaczenie fizyczne różnych cech może zostać utracone, kiedy wszystkie cechy
traktowane s ą jedynie jako liczby. Proponowane podejście nie wymaga pocz ątkowego zbioru cech. Co więcej, nie wymaga ono reprezentacji liczbowej
cech. W zamian proponjemy wykorzystanie tylko jednej, dziesiętnej wielkości liczbowej, pozwalaj ącej na skuteczne odkrywanie cech. Demonstrujemy,
że wykorzystanie pseudoodległóści probabilistycznej pozwala odkryć istotne cechy. Przedstawiamy także sposób budowy modelu probabilistycznego
analizowanych danych, wymaganego do zastosowania proponowanej techniki. W części pracy poświęconej eksperymentom, przedstawiamy wyniki
zastosowania proponowanej metody odkrywania cech w dziedzinie gry w szachy. (Wykorzystanie pseudoodległo ści probabilistycznej w odkry -
waniu cech w grze w szachy)
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Introduction
The probabilistic dissimilarity is a quantity, widely used

in probability theory and statistics as a measure of dissimi-
larity between two probability distributions. We focus on its
usage in feature discovery problems. Feature discovery is an
important data pre-processing stage having a strong impact
on the subsequent analysis, like classification, clustering, or
regression, to name a few. It aims to form possibly smallest
set of most relevant, discriminative, and informative features,
being the most useful representation of the objects in the an-
alyzed data set. Finding different features results in different
quality of the subsequent data processing. The choice of the
most appropriate features for a particular task is a well-known
problem in multivariate analysis. In the case of more complex
issues, it is sometimes necessary to consult an expert in a
considered domain. The existing approaches to feature dis-
covery cannot assure obtaining of the most desirable feature
subset. They choose certain features without any guarantee
that they are most useful in the context of a particular prob-
lem. Preliminary data analysis with application of the sta-
tistical means, introduced in this paper, can essentially help
to retrieve features properly characterizing the objects in the
considered data set.

Related Work and Our Method
Many solutions have been developed in the field of fea-

ture discovery. Generally, they may be divided into two
groups: feature extraction [1–4] and feature selection [5–8]
methods. Although the feature extraction and feature selec-
tion problems have been widely studied, they still remain a
challenge, since there exist no optimal method for determin-
ing the most relevant features. The feature extraction meth-
ods aim to extract features by projecting the original high-
dimensional data into a lower-dimensional space through al-
gebraic transformations. The feature selection methods aim
to find the representative features from the set of all fea-
tures according to some criteria, for example the features
are ranked according to their predictive power [9]. In other
words, feature extraction is considered a process to generate

a new and smaller feature set by linearly or nonlinearly com-
bining the original features, while feature selection is an ap-
proach to selecting relevant feature subset from the original
feature set. Although feature selection preserves the original
physical meaning of the selected features, it is considered
as more computationally complex, less flexible, and less ef-
fective than feature extraction approach [9, 10]. Both, the
feature extraction and feature selection approaches belong
to the optimization problems class. The difference between
them derives from different forms of objective functions. The
feature extraction algorithms seek for the solution in a con-
tinuous space, while the feature selection algorithms aim to
find the solution in a discrete space [9]. The feature extrac-
tion and the feature selection tasks are often framed as the
dimensionality reduction problems [9–12]. Both, the feature
extraction and feature selection methods assume the deter-
mination of most wanted features on the basis of the initial
feature set, what can be regarded as an inhibiting constraint.
They form a feature set, which is the subset of the initial fea-
ture set. This requirement is a constraint which does not
concern the approach proposed in this paper. Our method
works in the opposite way: it forms a feature set on the basis
of one, decimal feature, which should be a random variable,
and which we will call the quantity associated with the set
(see Definition 3). Therefore, the introduced solution allows
to determine features without any initial feature set, just on
the basis of the original data set and a random quantity, after
specific analysis with use of the probabilistic dissimilarity. We
have decided for naming the proposed solution as a feature
discovery problem to emphasize the relevance of the fact that
no initial feature set is required.

On the other hand, the authors of [13] avoid the feature
discovery process, instead, using the discrete probability dis-
tributions, built according to the procedure introduced in their
work.

The feature extraction and feature selection approaches,
both, utilize the numeric representation of the features. The
comparison of the features on the basis of their numeric rep-
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resentation can often lead to incorrect results - the number
associated with certain feature should be used, essentially,
only referred to this feature. Two popular feature extraction
algorithms: Linear Discriminant Analysis (LDA) and Princi-
pal Component Analysis (PCA), and the Class Separability
feature selection criterion, for example, are based on the uti-
lization of the covariance-matrices (PCA), or scatter-matrices
(LDA, Class Separability), which are created on the basis of
feature-vectors. This results in applying the same algebraic
transformations to all features, regardless they represent dif-
ferent properties, and, most likely are expressed in different
units. The problem become especially noticeable in the case
of binary features (the feature describes existence or non-
existence of certain property). The numeric (binary) repre-
sentation of such feature should not be algebraically com-
pared to other features expressed in the decimal numbers
for example. This problem is a well-known issue by the wide
range of researchers and engineers, and the fact, the pro-
posed solution use only one numeric, always decimal quan-
tity, instead of numeric representations of all features, thus,
avoiding associated with it difficulties, may be recognized as
a significant advantage.

The Probabilistic Dissimilarity
In the probability theory and statistics, a several prob-

abilistic dissimilarities are proposed. A survey of the fre-
quently used ones can be found, for example, in [14–16].
Some of them are metrics (satisfy all metrics requirements),
and some are not, but still present useful properties. Our
method does not impose any requirements to the dissimilar-
ity, in other words, an application of any probabilistic dissim-
ilarity is possible. However, in our experiments, we had to
choose the specific one, and we have decided for the use of
the Hellinger distance. This choice was motivated with the
useful and convenient properties of this quantity. Therefore,
throughout this paper, we will refer to the Hellinger distance
as the probabilistic dissimilarity. In order to define this dissim-
ilarity and its properties, we will use the following notation.

Let P and Q denote two probability measures on a mea-
surable space Ω with σ-algebra F . Let λ be a measure on
(Ω,F) such that P and Q are absolutely continuous with
respect to λ, with corresponding density functions p and q
(for example, λ can be taken to be (P + Q)/2 or can be the
Lebesgue measure).
Definition 1 ([14, 16]) The Hellinger distance between P

and Q on a continuous measurable space (Ω,F) is defined
as
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The square roots of densities 
√

p and 
√

q belong to the
Hilbert space of square integrable functions L2 [15]. This
definition does not depend on the choice of the measure λ
[15, 16]. Hellinger distance can be used to estimate the dis-
tances between two probability measures independent of the
parameters.

For a countable space Ω, measures P and Q on (Ω,F)
are N -tuples (p1, p2, . . . , pN ) and (q1, q2, . . . , qN ), respec-
tively, satisfying following conditions: pi ≥ 0, qi ≥ 0,
∑

i pi = 1 and
∑

i qi = 1.
Definition 2 ([16, 17]) The Hellinger distance between mea-
sures P and Q on a discrete measurable space (Ω,F) is

defined as
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In some papers [16, 17] the factor of 1
2

in Definitions 1 and 2
is omitted. We consider definition containing this factor, as it
normalizes the range of values taken by the distance. Some
sources [18, 19] define the Hellinger distance as the square
of H. Defined by formulae (1) and (2) Hellinger distance is a
metric, while H2 is not a metric, since it does not satisfy the
triangle inequality.

Hellinger Distance’s Properties
The Hellinger distance has the following properties:

1. It takes values from the interval [0, 1] which is conve-
nient, since it can be interpreted as the probability mea-
sure (if the factor 1

2
is removed from the Definitions 1

and 2 values taken by the distance belong to the inter-
val [0, 

√
2]) [15, 16].

2. H(P, Q) = 0 if and only if 
√

p =
√

q, that is, when
P = Q [15].

3. H(P, Q) = 1 if and only if pq = 0 which is the condition
for disjoint P and Q [15].

4. It is symmetric, that means H(P, Q) = H(Q, P).
5. It satisfies the triangle inequality, which means that

H(P, Q) ≤ H(P, R) + H(R, Q) for any P, Q, R.
6. For product measures P = P1 × . . .× Pn, Q = Q1 ×

. . .×Qn on a product space Ω1 × . . .× Ωn [15, 16]

(3) H2(P, Q) = 2− 2
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2
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The consequence of (3) is as follows [15]

(4) H2(P, Q) ≤
n
∑

i=1

H2(Pi, Qi)

Factorization presented in (3) is the main reason for
great usefulness of the Hellinger distance in problems
involving product measures [15].

Building of the Probabilistic Model
The concept of feature discovery process improvement

introduced in this paper assumes the application of the
Hellinger distance as a probabilistic tool increasing the accu-
racy of choosing the most appropriate features for the specific
issue. This requires building of a statistical representation of
the considered data set.

The probabilistic model that we utilized concerned dis-
crete probability distributions that can be associated with the
analyzed data set.
Definition 3 The quantity associated with the set is defined
as the quantity, which can be determined for each object in
this set. This quantity is assumed to be a random variable.

For a purpose of building mentioned distributions one
need to choose the quantity associated with the analyzed
data set. Values of this quantity for each of the objects in the
analyzed set are their realizations. Each of the distributions
will be constructed on the basis of these realizations.
Definition 4 The general discrete probability distribution is
defined as the discrete probability distribution obtained by
choosing randomly a fixed number of objects from the set
and building a probability distribution based on the values of
the quantity associated with the set for each of the chosen
objects.
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The target model will consist of the set of three discrete
probability distributions, including the general discrete prob-
ability distribution. The other two distributions will be created
according to the Procedure 1 in the next section. The se-
lection of the quantity associated with the set, necessary for
building of a probabilistic model, strongly impacts on the sub-
sequent stages of our method, and, consequently, on the
effectiveness of the entire feature discovery approach pro-
posed in this paper. Therefore, the quantity should be pos-
sibly most relevant, discriminative and informative feature of
the objects in the analyzed data set. We do not provide an
exact, principled way to find it, however, we claim that the
advantage of our method is that it leads to discovery of the
feature set on the basis of only one quantity. This can be in-
terpreted as substituting of the entire set of multiple features
with only one, single feature. This kind of approach can be
recognized as the opposite to standard feature extraction or
selection techniques, since it forms a feature set on the basis
of one feature, while the existing feature extraction or selec-
tion methods determine the final feature set as a subset of
the initial feature set. In our experiments in the field of the
game of chess, we used, as a mentioned above quantity, the
difference between the chess position score produced by the
chess engine on two fixed depths of the decision tree search.

Feature Discovery with the Hellinger Distance
The main goal in the introduced solution is to initially

separate two subsets in the entire analyzed data set using
the Hellinger distance. The intention is to obtain two sub-
sets, distinct in the space of some features. To accomplish
this, one may take advantage of the statistical model involv-
ing probability distributions described in the previous section.
The differences between objects in these subsets should be
chosen as the features of the objects in the analyzed data
set, since they will reveal discriminative information about the
objects in the set, clearly indicating relevant features.

Let K denote the analyzed data set and let ρK denote
the general discrete probability distribution associated with
the set K . Building of the distribution ρK is described in
the previous section. We intend to separate from the set
K two subsets denoted as L and M , which we will call the
Hellinger-distinct sets. The subsets L and M are character-
ized by the discrete distributions ρL and ρM respectively. Let

denote the lower bound of the Hellinger distance and let β
denote the upper bound of the Hellinger distance, which will
be used to define the Hellinger-distinct sets L and M . Let γ
be the cardinality of the set L and of the set M . Let MAX be
the maximal number of iterations in the Procedure 1, before
the interval pointed by the Hellinger distance bounds α and

will be narrowed. This ensures that the Procedure 1 will
terminate in a finite number of steps. The choice of parame-
ters α, β, γ, and MAX is arbitrary. The values, we assumed
in our experimental study, are given in section describing the
experiments.
Definition 5 The Hellinger-distinct sets L and M in the set
K are defined as the sets satisfying following conditions:

1. L ⊂ K, M ⊂ K.
2. H(ρK , ρL) ≤ α, H(ρK , ρM ) ≥ β.
3. α < β.

The process of generating distributions ρL and ρM , sat-
isfying condition 2 of Definition 5, and the process of creat-
ing sets L and M for settled α, β, γ, and MAX , satisfying
condition 3 of Definition 5, is described in the following pro-
cedure.
Procedure 1 The creation of the Hellinger-distinct sets L
and M in the set K .

Step 1. Initially assign L← ∅, M ← ∅, n← 0.
Step 2. Final cardinality of the sets L and M settle to the

value γ.
Step 3. Draw the object k ∈ K .

n← n + 1.
If n ≥ MAX , then α ← α + 0.01, β ← β −
0.01, n← 0.

Step 4. If H(ρL∪{k}, ρK) ≤ α and |L| < γ, then L ← L ∪
{k},
else if H(ρM∪{k}, ρK) ≥ β and |M | < γ, then
M ←M ∪ {k},
else go to Step 3.

Step 5. If |L| < γ or |M | < γ, then go to Step 3.
Step 6. The sets L and M are the sought sets.

The distribution ρL is built by systematic appending ran-
domly drawn samples, which do not increase the value of
the Hellinger distance above the level α. Samples, which
cause crossing this boundary, are rejected. Each sample is
an object from the set K having assigned value of the cho-
sen quantity associated with the set K . Consequently, one
obtains the distribution ρL, for which the Hellinger distance
from the distribution ρK is below the level α (ρL is near, in
the meaning of the Hellinger distance, to the ρK ). One also
obtains a set L, from which the samples in the distribution ρL

come. In the case of the distribution ρM , which should be far,
in the meaning of the Hellinger distance, from the ρK distri-
bution, one accepts only samples, which do not decrease the
Hellinger distance below the level β during the distribution
building process. And, as a result one gets the set M .

The Procedure 1 leads to creation of the subsets L and
M of the analyzed data set K allowing to reveal the essential
differences between the objects in the original set K . These
differences should be used as features. At this point, it is
clear how the concept proposed in this paper leads to ef-
fective feature discovery, since it is easier to determine fea-
tures as the differences between the objects in two sets than
choosing them without any additional knowledge about the
data.

In our experiments, we employed the Hellinger distance
defined as the square of H. Defined this way, it is not a met-
ric (see section describing the Hellinger distance). However,
our purpose was to show that despite it does not satisfy all
conditions of the metric’s definition, it is still a very useful tool
in the feature discovery problem.

Experiments
In our experiments, we wanted to show, that separation

of the Hellinger-distinct sets L and M in the data set K , can
be helpful in determination of the most essential features of
the objects in the set K . As a field of the experiments, we
have chosen the game of chess, since it is a difficult and
complex domain. As analyzed data set, we have used a set
of chess positions of a specific material configuration, i.e.,
positions with white king, rook, knight, and pawn vs. black
king, rook, knight, and pawn, called KRNPkrnp positions, for
short. The example is discussed in more details in [20].

The random quantity associated with the set K , in the
sense of the Definition 3, was the difference between score
returned by the chess engine after 10 ply deep search and
the 15 ply deep search. The quantity defined this way, may
be considered as a random variable, since it is strongly de-
pendent on some random factors, like contents of the hash
table used during the game tree search process, hash table
size, or unknown (to the user of the engine) search algorithm
extensions. The score difference data gathered for some set
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of samples into the distribution constitute the general discrete
probability distribution in the sense of the Definition 4. In our
case, the number of samples was 2000, and the resulting
distribution is shown on Figure 1.
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Fig. 1. A general discrete probability distribution (score difference
distribution) for a set containing KRNPkrnp positions. A single pawn
is worth 100 centipawns

For a problem formulated this way, we focus on the dis-
covering of features of the KRNPkrnp chess positions, which
is not a simple task, in general, even for an expert at grand-
master level. We give an example of the feature of the chess
positions, discovered with our method. We also test the qual-
ity of separation of subsets L and M from the set K , by
comparison with the results of some classical method of clus-
tering applied to the set L∪M . The experiment was carried
out according to the following procedure:

Procedure 2 Let the following data be given:
• the set K with the general discrete probability distribu-

tion ρK ,
• any clustering method based on the features of the ob-

jects in the clustered data set.
The procedure goes as described below.
Step 1. Separate the Hellinger-distinct sets L and M in the

set K , according to the Procedure 1, for the fixed
boundaries α and β (α < β), and fixed cardinalities
of the sets L and M .

Step 2. Carry out the clustering of the set L ∪M using any
clustering method based on the features of the ob-
jects in the set L ∪M .

Step 3. Evaluate the obtained results by testing, whether the
classical method generated at least one cluster con-
taining only (or in majority) objects from the set L or
from the set M .

Existence of at least one such cluster can be considered
as a case confirming the hypothesis that the Hellinger dis-
tance can successfully suggest the division criterion for the
sets L and M (by showing the differences between the ob-
jects of the sets L and M ), which can be regarded as the
discovered feature.

In the experiment, the following assumptions were
stated:

• Let the set K be the set of all chess positions of type
KRNPkrnp,

• Let ρK be the general discrete probability distribution
associated with the set K ,

• Let the quantity associated with the set K be the dif-

ference between the chess position score produced by
the chess engine on depth 10 and 15 half-moves of the
decision tree search,

• Let the clustering method used for evaluation of the
obtained results be the expectation maximization (EM)
method,

• Let the boundaries α = 0.2, β = 0.9, and the cardinal-
ity γ = 50, for both sets L and M . Let MAX = 1000.

Following the Procedure 2, we get the following:
1. The Hellinger-distinct sets L and M in the set K , such

that H(ρK , ρL) ≤ 0.2, H(ρK , ρM ) ≥ 0.9,
(a) the set L (having 50 objects) contains 20 positions

with at least one pawn one line before the promo-
tion rank (second rank for black and seventh rank
for white),

(b) the set M (having 50 objects) contains only 8 po-
sitions characterized by this feature,

2. EM-clustering results for the set L ∪ M with 10 clus-
ters, among which, there is one particularly interesting
cluster containing only the objects possessing feature
described before (8 of 10 positions in this cluster come
from the set L, see Figure 2).
Even after brief examination of the sets L and M it is

easy to notice that a feature, which differs the objects of the
set K well, is the possession of a pawn placed one line
before the promotion rank, by at least one of sides . Ex-
ecution of the Procedure 2 results in discovering the feature
described above. The clustering of the set L ∪M with us-
age of the EM method confirmed this choice by forming a
cluster, which contains only the objects characterized by this
feature. It is worth to notice that the discovered feature is
the binary-type feature, which would be difficult to detect by
known feature extraction or feature selection algorithms. Fig-
ure 2 presents all positions from the best cluster, which sug-
gests the above feature very clearly.
Open Problems

The problem which remains unsolved is the proper
choice of the quantity associated with the set (Definition 3),
which should be a random variable. This paper gives no de-
tailed, principled way to find it, noting that the choice of it
should not be arbitrary, since the further phases of the pro-
posed approach strongly depend on this quantity. Therefore,
it should reflect the most discriminative and relevant informa-
tion about the objects in the analyzed data set. These are
the requirements of a standard feature extraction or selec-
tion problem, however, the advantage of our method is that
it needs only one feature, on the basis of which the whole
feature set might be formed. This can be interpreted as sub-
stituting of the feature set with only one, single feature.
Summary

In this paper, we proposed an approach to the feature
discovery based on the utilization of certain statistical means,
specifically the Hellinger distance. The general concept was
to separate two subsets (the Hellinger-distinct sets) from the
analyzed data set in order to extract the differences between
these subsets and use them as features of the objects in the
analyzed set. In other words, the Hellinger-distinct sets al-
low to identify the highly discriminative division criteria for the
original set, which are the desirable features.

During the experiments we carried out the comparison of
the results obtained by the introduced procedure with the re-
sults of a classical feature-based EM clustering method. The
EM method formed a cluster containing only the objects pos-
sessing the feature discovered by the presented algorithm.
This confirms that the discovered feature provides a good
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discrimination of the objects in the analyzed data set, and,
therefore, is recommended for use on further stages of the
analysis. We gave an example of the feature clearly sug-
gested after the execution of the presented procedure. The
mentioned feature is the binary-type feature, which is difficult
to detect by the classical feature extraction or feature selec-
tion methods. The application of the Hellinger distance in the
feature discovery problem can be considered as an essential
improvement in the case of difficult and complex domains,
like the game of chess, for example.
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Fig. 2. One of the clusters obtained with the EM method. In each
position, white is to move. Each position of this cluster has at least
one pawn before the promotion rank

The proposed approach can be utilized as an indepen-
dent feature discovery algorithm, however, it can be also con-
sidered as a data pre-processing tool supporting the existing
approaches to either feature extraction or feature selection.
In this case the Hellinger distance-based feature retrieval
may serve as a procedure for generating the initial feature
set on which the feature extraction or selection methods will
be invoked. This will provide the initial feature set consisting
of relevant features, which will be additionally processed by
the feature extraction or selection algorithms allowing to ob-

tain features being a result of combined, two-stage feature
retrieval method.
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PRZEGL ĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 87 NR 1/2011 244


