Application of voltage stabilizer in Slovenian low voltage grid

Abstract. In a competitive market power utilities are putting a lot of efforts in meeting vast range of customers' expectations in order to secure their market share. Their responsibility to provide adequate voltage quality throughout their grid is most important. A new type of voltage booster (MVB) is available on the Slovenian market since 2008. It is installed in the low voltage distribution line before consumers with poor voltage level. It raises the voltage at the output to a pre-set level of 235V and keeps it stable in spite of vast variations of power consumption. In this paper electrical characteristics of the MVB are analysed through the orthogonal decomposition of currents and also through power quality measurements analysis, taking into consideration SIST EN 50160 standard.


Keywords: voltage stabilizer, magnetically controllable inductance, low voltage distribution network.

Słowa kluczowe: stabilizator napięcia, sterowana magnetycznie indukcyjność, sieć rozdzielcza niskonapięciowa

Introduction

The voltage boosters like discussed Magtech device, represent a fast and economically acceptable solution for improving voltage conditions in the low voltage distribution networks where voltage level is insufficient. After installing the voltage booster in the network, the voltage and current levels on the primary and as well as on the secondary - consumer side of the installed booster change. Magtech voltage boosters are capable to eliminate most problems related with the amplitudes of supply voltages at the costumers' side. However, they behave as nonlinear loads deteriorating waveforms of the output voltages and currents.

All nonlinear loads increase total harmonic distortion of currents and voltages and increase losses related with the energy transmission [1]-[4]. In this paper electrical characteristics of the MVB are analyzed [5]. Due to the presence of higher order harmonic components in measured signals, an analysis based on the orthogonal decomposition of currents in time domain has been performed. In order to perform harmonic analysis the Fourier analysis has been applied.

MCI – magnetically controllable inductance

Thanks to the application of a magnetically controllable inductance MCI, step-less voltage regulation within the MVB is made possible without any moving parts or any semiconductors in the power circuit. This technology makes MVB a fast responsive, robust and no-maintenance device with a long lifespan.

The MCI is produced with sole copper and iron. The main copper winding on the outside produces alternate magnetic flux within the core. A hidden DC control winding on the inside produces a steady magnetic flux, which is perpendicular to the main one. The amount of DC flux sets the inductance value in the main winding. MCI is a magnetically adjustable inductor with an exceptional efficiency and large control range.

MVB design layouts and basic operation principle

Basic circuit diagram of a single phase voltage booster is shown in Fig. 1. The circuit consists out of the autotransformer ‘A’ with aserial winding ‘S’ connected between input point $I_i$ and output point $I_o$ of the voltage boosting circuit and parallel winding ‘P’, which is parallel to the input. There is also a variable inductance $L_{MCI}$ in parallel to the input. For the reasons of clarity, all control circuits are omitted in Fig. 1.

In the single-phase electric system shown in Fig. 1, where current and voltage contain only fundamental order harmonic components, boosting can be explained through two simple circuit equations using phasors:

\[ U_i = U_{MCI} + U_p \]  
\[ U_o = U_{MCI} + U_p + U_S = U_{MCI} + U_S \]

where $U_i$ and $U_o$ are the phasors of input and output voltages, $U_p$ and $U_S$ are the phasors of voltages on the parallel and on the serial windings, $U_{MCI}$ is the phasor of voltage on the variable inductance $L_{MCI}$.

The pre-set output voltage $U_o$ is fixed to 235V. All the variations of the input voltage $U_i$ must be, therefore, compensated by dynamically adjusting the circuit characteristics. Since the autotransformer ratio is not variable but fixed, the voltage adjustment could only be performed by changing the inductivity of the $L_{MCI} (B')$.

In Fig. 1 $I_i$ and $I_o$ are the phasors of input and output currents, while $I_p (=I_{MCI})$ is the phasor of current in parallel winding. $I_{sat}$ is DC current for induction of a perpendicular magnetic flux. With the “N” the neutral point of MVB is denoted.

There are many known types of variable inductances. The specifics of the MCI are shown in Fig. 2. There is no mechanical movement or geometry change involved in inductivity variation. MCI exploits the so called “Virtual Air Gap Effect”.

Fig. 1. Basic circuit representation of a single-phase voltage booster

Fig. 1. Basic circuit representation of a single-phase voltage booster
Alternate electric current $i_e$ in main inductance winding induces the magnetic flux $B_t$. The inductivity of such an inductance is determined, among other factors, by the core permeability. Through the induction of a perpendicular magnetic flux $B_t=\mu H$ within the same magnetic core, permeability in the direction of $B_t$ can be altered and thus inductivity changed.

Orthogonal decomposition of currents in time domain

Let $u_s(t)$, $u_c(t)$ and $u_o(t)$ be the voltages and $i_s(t)$, $i_c(t)$ and $i_o(t)$ be the currents of the three-phase system observed over a selected time interval $t\in[0, T]$, where they can be treated as continuous functions. In order to determine current necessary for energy transmission from the source to the load, presented in the form of active power $P$, current vector $i$ and voltage vector $u$ are introduced by (3).

$$\mathbf{u} = \begin{bmatrix} u_s(t) \\ u_c(t) \\ u_o(t) \end{bmatrix}, \quad \mathbf{i} = \begin{bmatrix} i_s(t) \\ i_c(t) \\ i_o(t) \end{bmatrix}$$

The inner product of both vectors is introduced by (4).

$$\langle \mathbf{u}, \mathbf{i} \rangle = \frac{1}{T} \int_0^T \mathbf{u}^T \mathbf{i} \, dt = \frac{1}{T} \int_0^T (u_s(t) i_s(t) + u_c(t) i_c(t) + u_o(t) i_o(t)) \, dt = P_1 + P_2 + P_3 = P$$

where $P_1$, $P_2$ and $P_3$ are active powers of individual phases, where $P$ is the active power for the entire three-phase system. In the similar way squares of the current vector norm $\|\mathbf{i}\|^2$ and voltage vector norm $\|\mathbf{u}\|^2$ are introduced by (5) and (6), respectively:

$$\|\mathbf{i}\|^2 = \langle \mathbf{i}, \mathbf{i} \rangle = \frac{1}{T} \int_0^T \mathbf{i}^T \mathbf{i} \, dt = \frac{1}{T} \int_0^T (i_s^2(t) + i_c^2(t) + i_o^2(t)) \, dt = I_s^2 + I_c^2 + I_o^2$$

$$\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle = \frac{1}{T} \int_0^T \mathbf{u}^T \mathbf{u} \, dt = \frac{1}{T} \int_0^T (u_s^2(t) + u_c^2(t) + u_o^2(t)) \, dt = U_s^2 + U_c^2 + U_o^2$$

where the squares of RMS values of currents and voltages in individual phases are denoted by $I_s^2$, $I_c^2$, $I_o^2$ and $U_s^2$, $U_c^2$, $U_o^2$.

The current vector $i$ (3) can be decomposed into two orthogonal components. The first one, denoted with $i_u$ (7), represents the current vector component aligned with the voltage vector $u$ (3). The current vector $i_u$ is indispensable for energy transmission from the source to the load, represented in the form of active power $P$.

The second vector component, denoted with $i_u'$ (8), is orthogonal to the voltage vector $u$ (3) and does not contribute to the active power $P$.

$$\mathbf{i}_u = \begin{bmatrix} i_u \\ i_{u_2} \\ i_{u_3} \end{bmatrix} = \frac{P}{\|\mathbf{u}\|} \mathbf{u}$$

$$\mathbf{i}_u' = \begin{bmatrix} i_{u_2} \\ i_{u_3} \end{bmatrix} = \mathbf{i} - \mathbf{i}_u$$

The current vector components $i_u$ and $i_u'$ are orthogonal, which means, that their inner product equals zero (9).

$$\langle \mathbf{i}_u, \mathbf{i}_u' \rangle = 0$$

The norms of vector $i$ and its orthogonal components $i_u$ and $i_u'$ are related by (10). The square of current vector norm is defined in (5). In the similar way squares of the current vector norms $\|\mathbf{i}_u\|^2$ and $\|\mathbf{i}_u'\|^2$ are introduced by (11) and (12), respectively:

$$\|\mathbf{i}_u\|^2 = \langle \mathbf{i}_u, \mathbf{i}_u \rangle = \frac{1}{T} \int_0^T i_u^2 \, dt = \frac{1}{T} \int_0^T (i_s^2(t) + i_c^2(t) + i_o^2(t)) \, dt$$

$$\|\mathbf{i}_u'\|^2 = \langle \mathbf{i}_u', \mathbf{i}_u' \rangle = \frac{1}{T} \int_0^T i_{u_2}^2(t) + i_{u_3}^2(t) \, dt$$

The instantaneous powers are defined by (13), where $s(t)$, $p(t)$ and $q(t)$ are the apparent, active and reactive instantaneous powers of the three-phase system, respectively.

$$s(t) = \mathbf{u}^T(t) i(t)$$

$$p(t) = \mathbf{u}^T(t) i_u(t)$$

$$q(t) = \mathbf{u}^T(t) i_u'(t)$$

The squares of three-phase input and output apparent, active and reactive average powers are defined by (14).

$$S^2(t) = \|\mathbf{s}(t)\|^2 = \|\mathbf{u}(t)\|^2 \|\mathbf{i}(t)\|^2$$

$$P^2(t) = \|\mathbf{p}(t)\|^2 = \|\mathbf{u}(t)\|^2 \|\mathbf{i}_u(t)\|^2$$

$$Q^2(t) = \|\mathbf{q}(t)\|^2 = \|\mathbf{u}(t)\|^2 \|\mathbf{i}_u'(t)\|^2$$

The generalized power factor $PF^2$ is defined by (15).

$$PF^2 = \frac{\|\mathbf{p}(t)\|^2}{\|\mathbf{s}(t)\|^2} = \frac{\|\mathbf{i}_u(t)\|^2}{\|\mathbf{u}(t)\|^2} = \frac{P^2}{\|\mathbf{u}\|^2 \|\mathbf{i}_u\|^2}$$
The total harmonic distortions of individual line voltages \( THD_U \) are defined by (16).

\[
THD_U = \sum_{h=2}^{40} \frac{U_h}{U_1^2}
\]

where \( U_h \) denotes the RMS values of voltage harmonic components of order \( h \), while \( U_1 \) denote the RMS value of fundamental harmonic voltage.

Results

In this chapter, the results of measurements and analysis are presented. All results presented are given for MVB with rated power 55kVA. Fig. 3 shows voltage level \( U_{\text{mean}} \) in the form of root mean square value of the line voltage and voltage total harmonic distortion \( THD_U \) over the first week of MVB operation.

There is a visible change in values at the exact moment when MVB was first activated. Voltages on the MVB output were stabilized but on the other hand, a noticeable increase of \( THD \) appeared as well, although the SIST EN50160 allowed limits (8 %) were not exceeded.

Fig. 4 and 5 shows phase \( L_2 \) input and output voltages (\( u_i, u_o \)) and currents (\( i_i, i_o \)).

As declared through the basic MVB functionality, output voltage is higher when comparing to the input. Also as expected, the input current is increased since input power balances with the output.

Figs. 6 and 7 shows input and output currents of the MVB together with their orthogonal components. Comparison of orthogonal components exposes the main difference between input and output, which lies in the current vector \( i_u \) (8). On the other hand, current vector \( i_i \) (7) shows very little or no difference between input and output. This situation indicates low active power loss and higher reactive power losses through the MVB as a consequence of MVB being an inductive load to a generator (i.e. upstream network). Apparent, active and reactive power can be calculated by equation (13).
Fig. 7. Orthogonal decomposition of MVB output currents

Tree-phase apparent, active and reactive powers shown in Fig. 8 by (13) are determined. \( S_i \) and \( Q_i \) represent input apparent and reactive power of the MVB, while \( S_o \) and \( Q_o \) represent output apparent and reactive power of the MVB. \( P_i \) is active power at the MVB input.

Fig. 9 show total harmonic distortion \( THD_i \) as function of active input power of the voltage booster. For the \( THD \) characteristic the Fourier analysis has been applied. Total harmonic distortion \( THD_i \) shown in Fig. 9 by (16) is determined.

**Conclusion**

Field measurement clearly shows that the voltage booster is perfectly capable of maintaining constant output voltage disregarding the load variations with app. 200ms response time. Due to the circuit configuration (Fig. 1), the input power factor is decreased which slightly increases system power losses (Fig. 8). Fig. 9 clearly shows that the harmonic content significantly changes with the MVB boosting factor. Due to unbalanced three-phase system and presence of high order harmonics, orthogonal decomposition of currents in the time domain was used to evaluate the impact of the MVB on distribution network.

Following to the results, further knowledge and experience is gained on the applicability and fine tuning of future MVB installations.

**REFERENCES**


**Authors**: Silvo Ropoša, Elektro Maribor d.d., Vetrinjska ul. 2, SI-2000 Maribor, Slovenia, E-mail: silvo.roposa@elektro-maribor.si; dr. Gorazd Štumberger, University of Maribor, Faculty of electrical engineering and computer science, Smetanova ul. 17, SI-2000 Maribor, Slovenia, E-mail: gorazd.stumberger@uni-mb.si; Darko Lestan, Altens d.o.o., Linhartova 13, SI-1000 Ljubljana, Slovenia, E-mail: info@altens.si; Miran Rošer, Elektro Celje d.d., Vrnščeva 2a, SI-3000 Celje, Slovenia, E-mail: miran.roser@elektro-celje.si.