Environmental monitoring system with instant communication

Abstract Providing clean water with particular quality is one of the main issues in environmental protection. System for this objective must measure dozens of values and provide them reliably to staff of water treatment company. In complex situation such as leak or waste polluting water reservoir the system must help emergency response teams to solve the problem as quickly as possible.

Streszczenie. Dostarczanie wody pitnej o zadanej jakości jest jednym z głównych problemów w ochronie środowiska. System do tego zadania musi mierzyć dziesiątki wartości i wizualnie i wiarygodnie udostępniać je pracownikom firmy zarządzającej wodociągami. W krytycznej sytuacji takiej jak wyciek lub zanieczyszczenie rezerwuaru wody, system musi wspomóc służby ratownicze w rozwiązaniu problemu tak szybko, jak to możliwe. (Monitorowanie stanu środowiska z ciągłą komunikacją)

Keywords: measurement system, open protocols, xmpp.
Słowa kluczowe: systemy pomiarowe, otwarte protokoły, xmpp.

Introduction
In this article we discuss progress of our research in area of environmental protection with emergency alert system built upon set of wireless, distributed measurement stations. Particularly we are focused on scenario where operation area is clean water source such as lake.

Shortly comparing these two, current one is considered to have increased number of sensors, better communications, better field operation in changing environmental conditions, and improved user experience. Visualization of part of the system which performs measurements on the background of real deployment area is shown on figure 1, below. Except of Measurement Devices (MD) there is also a local On-shore Access Point (OAP) which provides link additional to direct yet expensive GSM/GPRS connection.

Dobczyckie Lake, which is our system test-bed, is an artificial reservoir in highlands valley. As it has dam and several tributary streams water quality must be controlled at several places. The lake is a clean water source for at least 0,5 mln people.

Related work and contributions
In our previous project one of successfully fulfilled goals was a creation of point-to-point data transmission between Measurement Device (MD), which was freely floating on lake, and a system server. In that research data was transmitted over GSM/GPRS channel [1]. We found some problems and drawbacks of that solution although it paved the road for our current project.

For water treatment there are legal regulations such as EU Commision directives which then are implemented by member states [2]. These regulation are limiting appropriate values of measurable water parameters. Exceeding these limits initiates emergency situation procedures.

System requirements specification
First of all we consider numerous set of devices per single observation area such as lake. However, in our test-bed we are building only a couple of such nodes architecture is designed for further investments and product growth. To achieve this goal we establish a stable layer of communication that will be interface between measurement devices and higher hardware layers such as data mining server and visualization terminals.

Secondly, there are no strict limits for number of sensors and number of sensor types present in the system. Number of sensors active in particular spot is limited only by number of devices and higher hardware layers such as data mining server and visualization terminals. To provide reliable, stable and sustainable solution, we have to have system that is ready for changes in legal regulations related to water quality measurements which may happen in some future. Therefore we need flexible protocol that is easy to extend and expand by features and variables that are unknown at this moment. XMPP fits these requirements.

We assume diversity of hardware especially for communication subsystems. In practice it will be choice between more expensive but widely available GSM/GPRS channel and short-range, local, wireless sensor network. In any case there must be guarantee for soft real-time data transmission at least during emergency situation. Obviously measurements must be transmitted reliably and it involves some level of security. We cannot allow malicious attacker to raise false alarms and as well as we cannot let our system to be misguided by terrorist poisoning the water reservoir. Of course system safety is a complex matter and ultimate security is not practically available although we must follow guides for high standards of quality.

Summary of these base requirements in manner following idea of SWOT analysis is shown in table 1.

Table 1. Target requirements for system

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of devices</td>
<td>Large (dozens to hundreds)</td>
<td>Challenge</td>
</tr>
<tr>
<td>Sensors per device</td>
<td>Large (tens)</td>
<td>Challenge</td>
</tr>
<tr>
<td>Link types</td>
<td>Many (i.e. ISM, GSM, eth)</td>
<td>Challenge</td>
</tr>
<tr>
<td>Reliability</td>
<td>High (soft real-time, 24/7)</td>
<td>Challenge</td>
</tr>
<tr>
<td>Environment</td>
<td>Hard (outdoor, 24/7)</td>
<td>Threat</td>
</tr>
<tr>
<td>Human factors</td>
<td>Possible (intrusion, theft)</td>
<td>Threat</td>
</tr>
<tr>
<td>Scale effect</td>
<td>Possible (scalability)</td>
<td>Opportunity</td>
</tr>
</tbody>
</table>
To cope with these requirements we use Extensible Messaging and Presence Protocol (XMPP) which is widely recognized as flexible and reliable choice [3]. XMPP is common creation of Jabber Foundation and IETF with strong participation of large and constantly growing community of freelancing developers, academic engineers, and huge companies [4]. General architecture of transmission layers is shown on figure 2.

Brief introduction to XMPP

For most of Instant Messaging (IM) services there is a company solely controlling servers that are providing particular service. XMPP architecture is more like e-mail servers, which means that every organization can control its own infrastructure. There are more similarities between these two solutions and one of the most noticeable is XMPP addressing, which highly resembles familiar e-mail style: name@server.domain.

XMPP is not p2p communication and for transmissions between two users a distributed network of independent servers is needed in most cases. Of course “user” is here a wide term that includes not only human beings but automated processes also. Authentication and authorization are two important transactions that usually needs to be performed before any other transmission might occur. Former one opens channel to server with Simple Authentication and Security Layer (SASL). Latter one almost completely nullifies the problem of unwanted messages which in e-mails environment have infamous name of “spam”. In this procedure, which from user point of view is called “subscription”, both sides add each other to a private list called “roster”. Roster is stored on the server and received by client after successful authentication.

Simplified situation with only one, private server is shown on figure 3 and it is case from our project as well. In the shown example Amy can communicate with Betty as they both have each other in the roster and are connected to the same server. Betty and Carolyn cannot send to each other due to only one-sided subscription, which perhaps should be finished in the future to let them communicate.

Every message is transmitted (push) from sender through server to recipient immediately. If recipient is offline server holds the message. Availability “status” of known, authorized “buddies” (roster entries) with its longer textual description is visible to each roster owner and updated in real-time. It means that there is constant and reliable channel control on both sides. This is difference comparing to e-mails, where sender never knows neither when nor if the message will arrive.

Main drawback of XMPP, which is based on XML, is its bloated, redundant transmission of structural elements. This problem is quite successfully coped with thanks to compression that comes bundled with transmission data encryption done with standard and popular Transport Layer Security (TLS) [5]. On the other hand there are implementations of XMPP designed for low power, embedded devices with limited hardware resources [6].

Data acquisition and transmission

In this project we are in cooperation with Institute of Electron Technology, Cracow and Institute for Sustainable Technologies – National Research Institute, Radom. They are providing sensors and mechanical parts. Our part was to provide MD mainboard and all elements above it such as: communication layer, system server, up to visualization.

For MD main controller we chose industrial computer Moxa ThinkCore W345, shown on figure 4. Machine is based on ARM7 microprocessor and provides four RS-232/485 channels, two USB ports and one relay. Unfortunately we have to deal with quite heavy constraints in memory and file-system space.

Default software environment on this machine is a Linux operating system, upon which we deploy software developed in our project. Multithreaded application architecture has four crucial modules:

1. control of transmission hardware,
2. logical management of XMPP connection,
3. control and queuing of data messages,
4. XML-RPC procedures for sensor layer API.

We are considering the fact that water quality monitoring must be performed regularly. Measurements of different quantities should be processed as data sets at specific paces although sometimes information must be obtained and sent to staff visualization computers in soft real-time. However, to continuously keep GPRS connection up on each of MD is expensive. Therefore to make solution
cheaper a group of MD communicates by free of charge ISM frequencies with nearby on-shore transceiver – OAP.

OAP having data received on short range wireless channel from a set of MD, relays it to higher layers of system structure. In simpler case OAP device works just as a network router, but in case that single OAP is covering large number of MD we also consider a possibility to use XMPP in s2s manner where one of XMPP servers is available on OAP. This approach with more system layers might become useful when other water companies will join and together will participate in central monitoring of water resources in the country.

Ethernet port (IEEE 802.3), which is available on chosen Moxa platform, is to be used only as a maintenance connector in most cases. However this is the cheapest channel therefore in some cases, whenever available, the ethernet connection can become main link.

Server side
We chose recent, stable Debian GNU/Linux release for main server operating system. It creates environment for many, important network services, including visualization and data mining, although in this paper we are discussing only XMPP daemon and problems within its proximity.

Until now we used a special entity that was an automated client (so called “bot”) working as a receiver for messages from MPs. Task of this bot was to analyse incoming transmission and put information into database. This approach is perhaps the easiest one as writing such bot was not much different in comparison to writing entity application was running on the same machine that was sending measured data from MPs. However this approach is tightly related to idea known as “Internet of things”, where every device can be remotely accessed so its software can be easily updated.

We assert that system developed with use of open and free instant messaging protocol – XMPP, is reliable, scalable, and therefore: proper solution for environmental alert system with soft real-time responses required.

Work of Łukasz Makowski has been supported by the European Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme.

REFERENCES

Authors: dr inż. Bogdan Dziadak, Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, ul. Koszykowa 75, 00-662 Warszawa, E-mail: bogdan.dziadak@ee.pw.edu.pl;
dr inż. Łukasz Makowski, Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, ul. Koszykowa 75, 00-662 Warszawa, E-mail: lukasz.makowski@ee.pw.edu.pl;
prof. dr hab. inż. Andrzej Michalski, Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych, ul. Koszykowa 75, 00-662 Warszawa, Wojskowa Akademia Techniczna, Instytut Systemów Elektronicznych, ul. Gen. Sylwestra Kaliskiego 2, 00-909 Warszawa, E-mail: anm1@iam.pw.edu.pl.