Abstract – This paper presents an optimal control method entitled ant colony PI controller (ACO-PI) for extracting the reference compensating currents to shunt active power filter (SAPF) under balanced voltages conditions, which is applied to eliminate line current harmonics and compensate reactive power. Two different control methods have been proposed for SAPF based on proportional-integral (PI) controller and intelligent PI-controller with ACO are presented. The identification theory based on instantaneous power (p-q) is used to establish the suitable current reference signals. The simulation results show that the new control method using ACO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Introduction
The raising use of power electronic equipment in industry and customers has caused harmonic propagation through electrical networks, and lower power factor [6]. Dynamic and flexible solutions to the power quality problems have been examined by researchers and power system [1]. Usually, passive filters have been used to eliminate current harmonics and to increase the power factor. However, the use of passive filter has many disadvantages of large size resonance and fixed compensation behavior so this conventional solution becomes ineffective [8]. The shunt active with several topologies [2]-[3] is generally used instead of passive filters to improve the power quality by injecting compensating currents [4],[14] and also, a very great for the compensation not only of current harmonics produced by disturbing loads, but also of reactive power of non-linear loads [7]. In order to determine the current reference signals a proposed theory known as PI-ACO optimized PI controller using ant colony algorithm.

The optimization of PI regulator’s parameters is crucial [15]. In this work, the problem of design current PI controller is formulated as an optimization problem. The problem formulation assumes in this study two performance indexes are the integral absolute error of step response and maximum overshoot as the objective function to determine the PI control parameters for getting a well performance under a given system. We propose an optimization method for SAPF in the aim to improve the compensation performances and reduce harmonic distortion through electrical lines distribution under all voltages conditions. These objectives are obtained by minimizing the fitness function.

In addition, ant colony optimization (ACO) has developed as effective for combinatorial optimization problems [9] such as the traveling salesman problem, quadratic assignment problem, graph coloring problems with successful result.

Ant colony optimization
The main idea of ACO is to model the problem as a search for a minimum cost path in a graph that base the evolutionary meta-heuristic algorithm. The behavior of artificial ants is inspired from real ants. They lay pheromone trails and choose their path using transition probability. Ants prefer to move to nodes which are connected by short edges with a high among of pheromone. The algorithm has solved traveling salesman problem (TSP), quadratic assignment problem (QAP) and job-shop scheduling problem (JSSP) and so on [10]-[11].

The problem must be mapped into a weighted graph, so the ants can cover the problem to find a solution. The ants are driven by a probability rule to choose their solution to the problem (called a tour). The probability rule (called Pseudo-Random-Proportional Action Choice Rule) between two nodes i and j.

\[P_{ij} = \left(\frac{\tau_{ij}^{\alpha} \eta_{ij}^\beta}{\sum_{k \in A} \tau_{ik}^{\alpha} \eta_{ik}^\beta} \right) \rho \]

The heuristic factor \(\eta_{ij} \) or visibility is related to the specific problem as the inverse of the cost function. This factor does not change during algorithm execution; instead the metaheuristic factor \(\xi_{ij} \) (related to pheromone which has an initial value \(\xi_{ij0} \)) is updated after iteration. The parameters \(\alpha \) and \(\beta \) enable the user to direct the algorithm search in favor of the heuristic or the pheromone factor. These two factors are dedicated to every edge between two nodes and weight the solution graph.

The pheromones are updated after a tour is built, in two ways: firstly, the pheromones are subject to an evaporation process, which allows the ants to forget their past and avoid being trapped in a local minimum (equation 2). Secondly, they are updated in relation to the quality of their tour (equations 3 and 4), where the quality is linked to the cost function.

\[r_{ij} \rightarrow (1 - \rho) r_{ij} \quad \forall (i, j) \in L \]
\[r_{ij} \rightarrow r_{ij} + \sum_{k=1}^{N} \Delta r_{ij} \quad \forall (i, j) \in L \]
\[\Delta r_{ij} = \frac{1}{c^T} \text{if } arc(i, j) \text{beong to } T^k \]
\[0 \quad \text{otherwise} \]

Where m is the number of ants, L represents the edges of the solution graph, and Ck is the cost function of tour Tk, built by the kth ant.
Arranged fitness function

In this work, the optimized parameters objects are proportional gain kp and integral gain ki, the transfer function of PI controller is defined by:

\[G_i(s) = \frac{K_p s + K_i}{s} \]

The gains \(K_p \) and \(K_i \) of PI controller are generated by the ACO algorithm for a given plant. As shown in fig.1. The output \(u(t) \) of PI controller is (equation 6):

\[u(t) = K_p e(t) + K_i \int_0^t e(t) dt \]

For a given plant, the problem of designing a PI controller is to adjust the parameters \(K_p \) and \(K_i \) for getting a desired performance of the considered system. Both the amplitude and time duration of the transient response must be kept within tolerable or prescribed limits, for this condition, two key indexes performance of the transient response is utilized to characterize the performance of PI control system.

These key indexes are integral absolute control error and maximum overshoot that are adopted to create objective function which is defined as:

\[F = f_{as} + f_{ias} \]

The maximum overshoot is defined as:

\[f_{as} = y_{max} - y_{ss} \]

\(y_{max} \) characterize the maximum value of \(y \) and \(y_{ss} \) denote the steady-state value.

The integral of the absolute magnitude of control error is written as:

\[f_{ae} = \int_0^t |e(t)| dt \]

System configuration

The principal function of the shunt active power filter (SAPF) is to generate just enough reactive and harmonic current to compensate the nonlinear loads in the line. A multiplicity of methods is used for instantaneous current harmonics detection in active power filter such as FFT (fast Fourier technique) technique, instantaneous p-q theory, and synchronous d-q reference frame theory. The main circuit of the SAPF control is shown in Fig.2.

The reference current consists of the harmonic components of the load current which the active filter must supply. This reference current is fed through a controller and then the switching signal is generated to switch the power switching devices of the active filter such that the active filter will indeed produce the harmonics required by the load. Finally, the AC supply will only need to provide the fundamental component for the load, resulting in a low harmonic sinusoidal supply.

Instantaneous active and reactive P-Q power method

The identification theory that we have used on shunt APF is known as instantaneous power theory, or PQ theory. It is based on instantaneous values in three-phase power systems with or without neutral wire, and is valid for steady-state or transitory operations, as well as for generic voltage and current waveforms. The PQ theory consists of an algebraic transformation (Clarke transformation) of the three phase voltages and current in the abc coordinates to the \(dq \) coordinates [5].

\[\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} 2/3 & 0 & -1/2 \\ 0 & \sqrt{3}/2 & -1/2 \\ -1/2 & -\sqrt{3}/2 & 0 \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} \]

\[\begin{bmatrix} i_{aA} \\ i_{bB} \\ i_{cC} \end{bmatrix} = \begin{bmatrix} 2/3 & 0 & -1/2 \\ 0 & \sqrt{3}/2 & -1/2 \\ -1/2 & -\sqrt{3}/2 & 0 \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} \]

The harmonic component of the total power can be extracted as:

\[p_L = \overline{p}_L + \tilde{p}_L \]

where, \(\overline{p}_L \): the DC component, \(\tilde{p}_L \): harmonic component.

Similarly,

\[q_L = \overline{q}_L + \tilde{q}_L \]

Finally, we can calculate reference current as:

\[\begin{bmatrix} i_{aA} \\ i_{bB} \\ i_{cC} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & \sqrt{3}/2 & 0 \\ -1/2 & 0 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} \]

Here,

\[\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} v_a & -v_b \\ v_b & v_a \end{bmatrix} \begin{bmatrix} \overline{p} \\ \overline{q} \end{bmatrix} \]
Shunt active filter control

Two control loops are studied, the internal loop responsible for the ac current control and the external loop responsible of dc voltage control with the consideration that the power is flowing from the capacitor source voltage to the grid.

A. Current Technique Control

The output currents of the inverter must track the reference currents produced by the current identification block. Consequently a regulation block is required and must be designed. In this work, the inverter is controlled using a PI regulator with a PWM modulator [12]–[13]; the control circuit system is shown in Fig. 3.

\[i_{m} \text{ and } i^{*}_{m} = (a,b,c) \] are correspondingly the active power filter output currents and reference currents.

B. dc Link Voltage control

The closed-loop transfer function of dc voltage regulation (Fig. 4) is given by:

\[\frac{V_{dc}}{V_{dcref}} = \frac{k_p s + k_i / k_p}{c s^2 + (k_p / c) s + (k_i / c)} \]

\[kp \text{ and } ki \text{ are respectively the proportional and integrator gains of the PI controller. The design of the PI controller is realized by identifying (17) to a prototype of second order system given by equation (18).} \]

\[\frac{V_{dc}}{V_{dcref}} = \frac{k_p s + k_i / k_p}{c s^2 + (k_p / c) s + (k_i / c)} \]

The key contribution in this paper is the proposed approach to find the optimal PI parameters fig. 5 in order to ensure that the steady-state error of the system is reduced to minimum. The objective of an optimal design of currents PI controller for given plant is to find a best parameters Kp and Ki of PI control system such that the performance indexes on the transient response is minimum.

Each parameter of Kp and Ki is hinted by 100 nodes respectively and there is resolution 0.0001 among each node, one node represents a solution value of parameters Kp and Ki. Thus, the more accuracy trails are updated after having constructed a complete path and the solution found.

In this study, there are 202 nodes including the start node and the end node to form a graph representation Fig. 6. Each path defines the performance indexes on the load disturbance response and transient response for a set of Kp and Ki.

The following solution algorithm for designing PI controller is presented as:

1. \[\text{Initialization.} \]
 An initial of ant colony individuals \[X_i i=1, 2, ..., m \] which is selected randomly. The m ants are placed on the n node. Format the pheromone trail intensity matrix, an initial value \[\tau_{ij} = \tau_0 \] for every edge between nodes i and j as well as \[\Delta \tau_{ij} = 0 \] generation counter \[n_g \]

2. \[\text{We set the time counter} \ t = 0 \]
3. \[\text{Starting tour.} \]
 Let node counter \ s = 1 \]
 For ant \ k = 1 \ to m do
 We place the starting node of the \(k_n \) ant in t_list (k,s) that is initial tour list.
 Searching neighborhood.
 We repeat until the data t_list is full.
For $k = 1$ to m

Ant choose the node j to move to with probability p_{ij} given in (1)

Move the k_{th} ant to the node j

Insert node j into $t_{list}(k, s)$

- Calculate the fitness function F_k (cost) for each ant

For $k = 1$ to m

Compute the function F_k of the tour visited by k_{th} ant

Update the shortest path found

For every edge

For ant $k = 1$ to m

The pheromone trail is calculated according to the equation (4)

- Update the global pheromone

For every edge (i, j) update the pheromone value according to the rule (2) and (3)

- Check the stop criterion

If $(n_{pg} < n_{pg_{max}})$ and stagnation behavior

Then

Record the best parameters of ants

Empty t_{list} and Go To starting tour

Otherwise

Stop.

Simulation results

The idea of simulation is to show the effectiveness of the shunt active power filter in diminishing the harmonic pollution produced by nonlinear load, using ant colony algorithm to design PI controller of current control, the initial values parameters of the proposed algorithm are presented in Table 1.

The SAPF model parameters are shown in the following Table 2.

Table 1: initial values parameters of ACO

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant Number</td>
<td>30</td>
</tr>
<tr>
<td>Maximum Cycle Time</td>
<td>130</td>
</tr>
<tr>
<td>Initial Value of Nodes Trail Intensity</td>
<td>0.2</td>
</tr>
<tr>
<td>Coefficient α</td>
<td>0.4</td>
</tr>
<tr>
<td>Relative Important Parameter of Trail Intensity β</td>
<td>3</td>
</tr>
<tr>
<td>Relative Important Parameter of Visibility α</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: SAPF parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply phase voltage U</td>
<td>220 V</td>
</tr>
<tr>
<td>Supply frequency f_s</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Filter inductor L_f</td>
<td>1 mH</td>
</tr>
<tr>
<td>Dc link capacitor C_f</td>
<td>4.4 mF</td>
</tr>
<tr>
<td>Smoothing inductor</td>
<td>0.1 mH</td>
</tr>
<tr>
<td>Sample time T_s</td>
<td>4 μs</td>
</tr>
</tbody>
</table>

A. First Case: Conventional current PI Controller

The SAPF is connected in parallel with nonlinear load, in this case the conventional PI controller is used to see the current regulation and its effect in damping harmonics current and reducing total harmonic distortion, the parameters Kp and Ki has been calculated by setting the desired dynamic parameters ω and ξ of the system, and by equating the above transfer functions (17) and (18). The PI control design involves regulation of injected current for harmonic and reactive power compensation. Simulation results show the line currents and its spectrum before compensation Fig.7, Fig.8 and the line current and its spectrum after compensation Fig.9, Fig.10 using shunt active power filter based on conventional PI controller. Fig.10 using shunt active power filter based on conventional PI controller, the total harmonic distortion (THD) has been reduced from 26.87% to 1.16%.

Table 3: Harmonic contents of the supply currents

<table>
<thead>
<tr>
<th>Harmonic order</th>
<th>I_h/I_1 (%) Before compensation</th>
<th>I_h/I_1 (%) After compensation</th>
<th>IEC 1000-3-4 I_h/I_1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>19.58</td>
<td>0.22</td>
<td>9.5</td>
</tr>
<tr>
<td>7</td>
<td>13.55</td>
<td>0.39</td>
<td>6.5</td>
</tr>
<tr>
<td>11</td>
<td>8.04</td>
<td>0.29</td>
<td>3.1</td>
</tr>
<tr>
<td>13</td>
<td>6.46</td>
<td>0.26</td>
<td>2.0</td>
</tr>
<tr>
<td>17</td>
<td>4.36</td>
<td>0.24</td>
<td>1.2</td>
</tr>
<tr>
<td>19</td>
<td>3.61</td>
<td>0.21</td>
<td>1.1</td>
</tr>
<tr>
<td>23</td>
<td>2.48</td>
<td>0.20</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 3 illustrates the individual amplitude of low-order harmonics in the supply current as a percentage of the
fundamental component compared to individual harmonics given in IEC 1000-3-4.

B. Second Case: Optimal current PI Controller

The proposed idea is to improve the power quality using optimal shunt active power filter based on ant colony optimization algorithm (ACO). The main objective for the system control is to minimize the fitness function which is defined by the following equation:

\[F = f_{se} + \alpha \cdot f_{iare} \]

In this case, \(\alpha \) value has been fixed to 1.5 to give an importance for the integral error in formulation function.

The value of system indexes are compared in Tab4, in this novel contribution that has improved performance system, the optimal cost function reached employing ant algorithm after 130 iterations is presented in Fig.11.

Table 4: Comparisons of SAPF indexes between used and unused ant colony algorithm

<table>
<thead>
<tr>
<th>Parameter and indexes</th>
<th>non optimized PI</th>
<th>Optimized PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain</td>
<td>295</td>
<td>370</td>
</tr>
<tr>
<td>Integral gain</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>8.796e+003</td>
<td>8.578e+003</td>
</tr>
<tr>
<td>Integral absolute error</td>
<td>1.088e+003</td>
<td>1.003e+003</td>
</tr>
<tr>
<td>Fitness function</td>
<td>1.097e+004</td>
<td>1.0584e+004</td>
</tr>
</tbody>
</table>

Simulation studies are carried out to predict performance of the proposed method. Fig.12 shows the simulation results which have been obtained under the same pervious condition of the conventional PI controller.

Table 4: Harmonic contents of the supply currents

<table>
<thead>
<tr>
<th>(h)</th>
<th>(I_h / I_1) (%) without SAPF (PI controller)</th>
<th>(I_h / I_1) (%) with SAPF (PI ACO)</th>
<th>(I_h / I_1) (%) with SAPF (IEC 1000-3-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>19.58</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>7</td>
<td>13.55</td>
<td>0.39</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>8.04</td>
<td>0.29</td>
<td>0.19</td>
</tr>
<tr>
<td>13</td>
<td>6.46</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>17</td>
<td>4.36</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>19</td>
<td>3.61</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>23</td>
<td>2.48</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>25</td>
<td>2.08</td>
<td>0.17</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Conclusion

This paper exhibits the validity of the proposed optimal current controller by ant colony algorithm for shunt active power filter, the results of simulations of optimized SAPF control technique presented in this work is discovered quite effective in the harmonic compensation and improving the input power factor. ACO technique is inspired by nature, and has proved itself to be effective solution to optimization problems. The main objective of this study is to design the parameters of SAPF-based current controller.

Generally, the results presented indicate that the ACO has a good sharp for finding the optimal fitness function and has proved its effectiveness in finding optimal parameters K_p and K_i for current-SAPF controller, it can be seen that after SAPF with ACO-PI controller runs, the current total harmonic distortion to 0.86% from 1.16% and the power factor to 0.96 from 0.87.

Table 5 Source current total harmonic distortion: THD%

<table>
<thead>
<tr>
<th>Without SAPF</th>
<th>SAPF PI-Controller</th>
<th>SAPF PI-ACO controller</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>THDi(%)</td>
<td>26.87</td>
<td>1.16</td>
<td>0.86</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.63</td>
<td>0.87</td>
<td>0.96</td>
</tr>
</tbody>
</table>

According to the previous results the proposed controller (PI-ACO) has better dynamic performance and robustness. The control method applied to SAPF has demonstrated good performance for harmonic elimination and reactive power compensation.

REFERENCES

Authors: Brahim Berbaoui Electrical Engineering Faculty University BP.417, Bechar 08000, Algeria, E-mail:b_berbaoui@yahoo.fr; Chellali Benachaiba Electrical Engineering Faculty University BP.417, Bechar 08000, Algeria, E-mail:chellali@netscape.net; Mustapha Rahli Engineering Faculty, USTO-MB, Oran 31000, Algeria; E-mail:rahlim@yahoo.fr; Hamza Tedjini Physics Engineering Laboratory, Ibn Khaldoun University Tiaret 14000, Algeria E-mail:tedjini_h@yahoo.fr.