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Abstract. This paper expands an approach presented in [1] to extraction of coarse-grained parallelism available in parameterized uniform and 
quasi-uniform perfectly-nested loops. It introduces a dependence analysis that is characterized by a polynomial time complexity and enables 
computing dependence distance vectors when the Petit dependence analyser fails to produce dependences. It permits to examine the performance 
of the approach for all parameterized perfectly-nested loops from the NAS Parallel Benchmark Suite.  
 
Streszczenie. W artykule przedstawiono rozwinięcie zaprezentowanego we wcześniejszej pracy [1] podejścia do ekstrakcji gruboziarnistej 
równoległości w jednorodnych oraz quasi-jednorodnych pętlach programowych idealnie zagnieżdżonych. Rozwinięcie uprzednich wyników zostało 
osiągnięte poprzez wprowadzenie analizy zależności o wielomianowej złożoności obliczeniowej jednocześnie umożliwiającej obliczenie wektorów 
zależności w tych przypadkach, w których uprzednio wykorzystany analizator zależności Petit sygnalizował brak możliwości analizy źródła. 
Stworzyło to ostatecznie warunki do oceny skuteczności działania proponowanego podejścia dla wszystkich sparametryzowanych pętli idealnie 
zagnieżdżonych zawartych w zestawie testowym NAS Parallel Benchmark Suite (Analiza zależności oraz ekstrakcja gruboziarnistej 
równoległości sparametryzowanych pętli idealnie zagnieżdżonych). 
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Introduction 

In paper [1] an approach is presented that enables the 
extraction of coarse-grained parallelism available in 
parameterized perfectly-nested static-control loops, where 
loop bounds as well as array subscripts are symbolic 
parameters. Most steps of the approach are characterized 
by a polynomial time complexity while other contemporary 
outstanding methods for extracting coarse-grained 
parallelism, such as [2, 3, 4], may require much time (even 
hundred of hours) and memory for calculations. This is why 
there exists a strong need in developing algorithms 
characterized by reduced time and memory complexities. 
Carried out experiments by the authors for the NAS Parallel 
Benchmark Suite [5] demonstrate that the proposed 
approach is efficient and very fast. In [1] the authors use the 
Petit dependence analysis tool [6], which fails to produce 
dependences for 28 loops. Moreover, Petit's calculations 
are based on the Presburger arithmetic which in general is 
not characterized by polynomial time complexity.   

The main purpose of this paper is to expand the 
approach presented in [1] by introducing a dependence 
analysis that is characterized by a polynomial time 
complexity and to examine the performance of the 
approach for all parameterized perfectly-nested loops from 
the NAS Parallel Benchmark Suite. 
 
Background 

In this section, we briefly introduce necessary 
preliminaries which are used throughout this paper. 

The following  concepts of  linear algebra are used in 
the approach presented in this paper: a polyhedron, lattice, 
the Hermite Normal Form of the matrix and its uniqueness, 
Hermite decomposition, affine lattice canonical form. Details 
can be found in papers [7, 8]. 
Definition 1 (Congruence relation, modulus matrix). Let y 
and z be two d-dimensional integral vectors and D be some 
integral d  d matrix of full row rank. We say that y is 
congruent to z modulo the column image of D, written: 
 

Dzy   mod   , 

 
if and only if the difference z – y is equal D  x for some 
d-dimensional integral vector x  d. Matrix D is called the 
modulus matrix [9]. 

Definition 2 (Equivalence relation). Matrix D yields an 
equivalence relation, denoted by D, which is defined by 
y D z if and only if y  z mod D [9]. 
Definition 3 (Equivalence class). An equivalence class in a 
set is the subset of all elements which are in equivalence 
relation D. The number of equivalence classes of D, is 
denoted by vol(D), the volume of D, which is the absolute 
value of the determinant of D. If the determinant of D is 
zero, then D does not have full row rank and thus D has 
the infinite number of equivalence classes. An equivalence 
class of D is also called a lattice [9]. 
Definition 4 (Representatives). The set of all integral vectors 
in the parallelepiped R(D) defined by the columns of D: 
 

   10,,|   dRDxxDR , 

 
defines a set of representatives for the equivalence classes 
of D [9]. 

In this paper, we deal with the following definitions 
concerned program loops: iteration space (IS), loop domain 
(index set), parameterized loops, perfectly-nested loops, 
dependence, dependence distance set, dependence 
distance vector, uniform dependence, non-uniform 
dependence, whose explanations are given in papers 
[3, 10]. 
Definition 5 (Uniform loop, quasi-uniform loop). We say that 
a parameterized loop is uniform if it induces dependences 
represented with the finite number of uniform dependence 
distance vectors [3]. A parameterized loop is quasi-uniform 
if all its dependence distance vectors can be represented by 
a linear combination of the finite number of linearly 
independent vectors with constant coordinates. 

Let us consider the parameterized dependence distance 
vector (N,2). It can be represented as the linear 
combination of the two linearly independent vectors (0,2) 
and (1,0) as follows (0,2) + a  (1,0), where a  . 
Definition 6 (Dependence Sources Polyhedron). Given a 
dependence distance vector dS,T, a dependence sources 
polyhedron DSP(dS,T) is the set of all the values of iteration 

vector Si  such that there exist dependences between 

 SiS  and  TSS diT , . 
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Definition 7 (Polyhedral Reduced Dependence Graph). 
A Polyhedral Reduced Dependence Graph (PRDG) is the 
graph where a vertex stands for every statement S and an 
edge connects statements S and T whose instances are 
dependent. The number of edges between vertices S and T 

is equal to the number of vectors dS,T  DS,T. Every edge is 
labelled with a dependence distance vector dS,T and 
a dependence sources polyhedron P(dS,T). 

In the next section of the paper, we analyse the time 
complexity of the proposed approach in a 
machine-independent way of assessing the performance of 
algorithms. For this purpose, the RAM (Random Access 
Machine) model of computation is used. Under the RAM 
model, we measure run-time by counting up an upper 
bound, , on the number of steps an algorithm takes on a 
given problem instance. Details on the model and the time 
complexity analysis can be found in paper [11]. 
 
Approach to calculating dependence distance vectors 
and extracting parallelism 

In this section, we expand the approach presented in [1] 
to extraction of equivalence classes  for both uniform and 
quasi-uniform loops on the step of calculating dependence 
distance vectors which is characterized by a polynomial 
time complexity.  

 
Calculating dependence distance vectors 

To find dependence distance vectors, a system of 
equations should be built for each pair of the same named 

variables )( 11 BIAID  , )( 22 BIAID   that are located in 

the loop body on both hand sides of assignment 
statements, the right and the left, or on the left-hand sides 
only, where A1, A2 are matrices of dimensions m  n, B1, B2 
are m-dimensional vectors. This system can be written as 
follows: 

 

(1)   














0

1221

D

IJD

BBJAIA

. 

 
For a pair of dependent iterations, the source is the iteration 
that is lexicographically less. 

In system (1), vector I  describes all the iterations that 
form the sources of pairs of dependent iterations, while 

vector DIJ   describes destinations of those, D  is the 
dependence vector. To obtain correct results, all dependent 
iterations have to be executed in lexicographical order [1]. 

To determine vector D , we have to solve system (1). From 
the second equation, we have: 
 

(2)   DIJ  .  
 
Substituting (2) into the first equation of (1), we obtain: 
 

(3)     21122 BBIAADA  .  

 
A solution to equation (3) is a dependence distance vector 
D with integer coordinates. When there does not exist any 
solution to equation (3), the loop does not expose any 
dependences. Equation (3)  can be solved by means of the 
Gaussian elimination algorithm whose time complexity is 
discussed later. 
 Consider the following loop: 
 

  for(i = 1; i <= 4; i++) 
    for(j = 1; j <= 3; j++) 
      a[i][j] = a[i+1][j]+a[i][j+1]; 
 
For this loop, there exist two dependence vectors: 











0

1
1D  and 










1
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2D . 

 
Extracting equivalence classes for both uniform and 
quasi-uniform loops 
 

Input : A parameterized perfectly--nested uniform or 
quasi-uniform loop 

Output : The parallelized loops scanning independent 
code fragments 

 
Method: 
1) Calculate dependence distance vectors. Find 

dependencies in parameterized perfectly-nested 
uniform or quasi-uniform loop. Work  out dependence 
distance vectors  using the approach presented above. 

2) Replace all parameterized dependence distance 
vectors. Replace each parameterized dependence 
distance vector with a linear combination of vectors 
with constant coordinates. For this purpose apply the 
algorithm presented in [12]. 

3) Form a dependence distance set. Form matrix D, 
D  nm, whose m columns are all non-parameterized 
dependence distance vectors dS,T, corresponding to the 
edges of PRDG. Associate row k of Dnm with a loop 
index ik, k=1,2,…,n where n is the number of loop 
indices (i.e. surrounding loops). 

4) Form the basis of the lattice from the dependence 
distance set. Transform matrix D into two sub-matrices 
D', D’  lm and D'’, D’’  (n-l)m, such that l rows of D', 
1 ≤ l ≤ n, are linearly independent and (n - l) rows of D'' 
are linearly dependent. When interchanging two rows, 
interchange also the loop indices associated with these 
rows. 

5) Find lattice canonical form. Transform sub-matrix D' to 
the Hermite Normal Form: 

 

  llZBUBUHD  ,0' , 

 
preserving loop indices associated with the rows of D'. 
Note that the lattice canonical form represents the 
equivalence relation.  

6) Find representatives for equivalence classes. Using B, 
calculate a set of representatives (one for  each 
equivalence class) depending on the following cases: 
a) l=n: define a set R(B) of representatives for 

equivalence classes as the set of all integral 
vectors in the parallelepiped defined by the 
columns of B, 

   

    .10,,|   dRBhZhBR , 

 
b) l<n: find the first l  coordinates of representatives 

for equivalence classes as follows: 
   

 
   .10,,|   llllll RBhZhBR , 

 
and enlarge matrix Bl to matrix B by inserting the 
last n-l zero rows. 
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7) Find equivalence classes. Using representatives h, 
h  R(B), form the following polyhedra that specifies  
equivalence classes: 

 

  ISyZzBRhzBhyy n    s.t.  | . 

 
Each equivalence class represents an independent 
subset of statement instances which are represented by 
an equivalence relation. 

8) Generate parallel loops. Apply any well-known code 
generation algorithm to generate parallel outer loops 
scanning a set of representatives R(B) and sequential 
inner loops enumerating in the lexicographical order 
the elements of set P for each equivalence class 
represented by h. 

The degree of parallelism is characterized by the 
number of equivalence classes and can investigated by a 
simple inspection of matrix B. Look at the paper [1] for 
details. 

 
 Time complexity 

Most steps of the proposed approach can be 
accomplished in polynomial time. 
1) The task of calculating dependence distance vectors 

requires solving a system of linear equations and it can 
be done in polynomial time by the Gaussian 
elimination. According to [13], this computation can be 
done in (ldm) arithmetic operations. 

2) The task of identifying a set of linearly independent rows 
of a matrix D, D  nm, with constant coordinates and 
dependent ones can be done in polynomial time by the 
Gaussian elimination. This computation can be done in 
(ldm) arithmetic operations, as it was previously 
mentioned. 

3) The task of transforming a matrix D', D’  lm to its 
Hermite Normal Form matrix B, B  ll can be 
accomplished,  depending on the algorithm used, even 

in  ))'log(()2log(1 DllBm/lmlΟ   operations [13], 

where  < 2.376. 

4) A set R(B) of representatives for equivalence classes is 
defined as a set of all integral vectors in the 
parallelepiped defined by the columns of B. According 
to [9] such a set of representatives can be found by 
enumerating the equivalence classes with nonnegative 
integral vectors in the lexicographical order (y <lex z if 
there is some i, 1 ≤ i ≤ l, such that yi < zi and for 
j=1,…,I - 1 and yj=zj). Enumerating l diagonal 
coefficients of B requires (l) operations and 
enumerating n-l rows of D'' requires  (n  (n - l)) 
operations. 

 
Experiments 

We have put the presented dependence analysis  
module into the C++ implementation of the approach to the 
extraction of equivalence classes. Additionally, we have 
used the well-known tool CLooG v0.14.1 [14] for code 
generation to achieve output source codes. The C++ codes 
have been compiled using the gcc v4.5.0 compiler. 

In order to evaluate the performance of the presented 
approach, we have examined all the perfectly-nested 
quasi-uniform loops (contained parameterized dependence 
distance vectors) provided by the well-known NAS Parallel 
Benchmark (NPB) Suite. In NPB, we have found 185 
perfectly nested loops distributed in terms of dependence 
types as shown in Table 1. 
 
Table 1. The quantitative distribution of perfectly-nested loops in 
terms of dependence types for the NAS Parallel Benchmark Suite 

 The results of dependence analysis  Number 
of loops

1) No dependences : 123
2) Uniform dependences, including: : 14
  non loop-carried dependences : 9
  loop-carried dependences : 5

3) Affine dependence distance vectors : 1
4) Parameterized dependence distance vector : 47
 The total number of perfectly nested loops : 185

 
  

Table 2. Effectiveness and time analyses of the proposed approach for quasi-uniform loops from the NAS Parallel Benchmark Suite 

# Source loop 
Degree of 
parallelism 

Number of 
parameterized 

vectors 

Dependence 
analyzer 

Petit 
Time taken by the main steps of the approach [s] 

- 2 - - 3 - - 4 - - 5 - - 6 - - 7 - 
1) BT_error.f2p_5.t  1 29 308 N/A 3364 2 277 53 - - 
2) BT_rhs.f2p_1.t  1 39 849 N/A 3919 2 292 67 - - 
3) BT_rhs.f2p_5.t  1 111 3608 N/A 6476 5 879 223 - - 
4) CG_cg.f2p_4.t  1 8 245 N/A 433 1 51 11 - - 
5) FT_auxfnct.f2p_1.t  1 1 126 1040 56 1 6 5 - - 
6) LU_HP_jacld.f2p_1.t  1 1761 95279 N/A 82021 27 12532 2325 - - 
7) LU_HP_jacu.f2p_1.t  1 1761 92593 N/A 79148 27 11141 2374 - - 
8) LU_HP_l2norm.f2p_2.t  1 9 248 N/A 999 1 49 13 - - 
9) LU_HP_pintgr.f2p_11.t  1 6 426 N/A 693 1 31 9 - - 

10) LU_HP_pintgr.f2p_2.t  1 88 486 N/A 4890 5 879 153 - - 
11) LU_HP_pintgr.f2p_3.t  1 6 426 N/A 623 2 41 11 - - 
12) LU_HP_pintgr.f2p_7.t  1 6 385 N/A 591 1 39 8 - - 
13) LU_jacld.f2p_1.t  1 2080 92323 N/A 87734 25 21340 3729 - - 
14) LU_jacu.f2p_1.t  1 2080 92689 N/A 89439 29 19880 3920 - - 
15) LU_l2norm.f2p_2.t  5 9 271 N/A 896 6 54 17 1 192 
16) LU_pintgr.f2p_11.t  1 6 285 N/A 702 1 30 11 - - 
17) LU_pintgr.f2p_2.t  1 88 486 N/A 5937 5 930 186 - - 
18) LU_pintgr.f2p_3.t  1 6 285 N/A 673 1 39 11 - - 
19) LU_pintgr.f2p_7.t  1 6 285 N/A 629 1 40 11 - - 
20) SP_error.f2p_5.t  1 29 308 N/A 3092 2 298 61 - - 
21) SP_ninvr.f2p_1.t  1 87 1563 N/A 6088 5 721 161 - - 
22) SP_pinvr.f2p_1.t  1 87 1643 N/A 6551 4 798 156 - - 
23) SP_rhs.f2p_1.t  1 54 1072 N/A 4608 4 492 111 - - 
24) SP_rhs.f2p_5.t  1 111 3608 N/A 5760 2 1013 236 - - 
25) SP_txinvr.f2p_1.t  1 234 2671 N/A 8573 6 1997 411 - - 
26) SP_tzetar.f2p_1.t  1 249 2749 N/A 7980 9 2394 469 - - 
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27) UA_adapt.f2p_2.t  N1N3N4 24 2691 22981 2416 2 267 51 1 221 
28) UA_diffuse.f2p_1.t  1 12 447 N/A 1167 2 69 21 - - 
29) UA_diffuse.f2p_2.t  1 3 215 17037 148 1 18 6 - - 
30) UA_diffuse.f2p_3.t  N1N3N4 3 257 10960 346 1 23 6 2 204 
31) UA_diffuse.f2p_4.t  N1N3N4 3 251 3769 312 2 21 5 1 225 
32) UA_diffuse.f2p_5.t  N2N3N4 3 262 3523 348 1 21 5 1 238 
33) UA_precond.f2p_3.t  N1 3 258 2448 237 1 15 6 1 202 
34) UA_precond.f2p_5.t  1 32 189 N/A 3795 2 369 68 - - 
35) UA_setup.f2p_16.t  N1N2 3 229 1218  321 1 20 6 1 221 
36) UA_transfer.f2p_1.t  1 3 176 1837 197 1 15 6 - - 
37) UA_transfer.f2p_2.t  1 3 161 1274 170 1 13 6 - - 
38) UA_transfer.f2p_3.t  1 3 169 1281 168 1 13 6 - - 
39) UA_transfer.f2p_5.t  1 3 160 1248 170 1 14 5 - - 
40) UA_transfer.f2p_6.t  1 3 168 1275 167 1 13 6 - - 
41) UA_transfer.f2p_7.t  N1 3 192 2413 269 1 16 7 1 202 
42) UA_transfer.f2p_8.t  1 3 161 1249 169 1 16 8 - - 
43) UA_transfer.f2p_9.t  N1 3 195 9182 270 1 18 5 1 199 
44) UA_transfer.f2p_10.t  1 3 160 1259 173 1 14 6 - - 
45) UA_transfer.f2p_13.t  N1 3 195 2468 262 1 15 5 1 203 
46) UA_transfer.f2p_15.t  N1 3 233 2763 257 1 15 6 1 202 
47) UA_transfer.f2p_18.t  N1 3 236 2768 256 1 15 6 1 196 

 
 

Quasi-uniform loops (contained parameterized distance 
vectors) have been parallelized using the  Intel PentiumM 
1.5GHz machine  with the Linux openSUSE v11.1 32-bit 
operating system. The results of the experiments are 
collected in Table 2, where time is presented in 
microseconds and N/A stands for not-available. 

 Using the presented dependence analysis, we have 
managed to find dependence vectors for all parameterized 
perfectly-nested loops and decrease the time of a parallel 
compilation. Under our experiments, we have found that a 
dependence analysis as well as the replacement of  
parameterized dependence distance vectors by a linear 
combination of constant vectors have taken most of the 
time.  The other steps of the algorithm have performed 
several times faster. The whole time required for a 
dependence analysis and extracting equivalence classes is 
counted up in milliseconds, what is similar to the previously 
obtained results.    

 
Conclusions 

In this paper, we have expanded the approach 
presented in [1] by introducing a dependence analysis 
characterized by a polynomial time complexity. It has 
permitted to examine the performance of the approach for 
all parameterized perfectly-nested loops from the NAS 
Parallel Benchmark Suite. The experiments confirm that the 
presented approach is very fast and the use of efficient 
dependence analysis methods can improve its 
effectiveness and the performance of parallel compilation. 

The comparison of the performance of the presented 
approach with other well-known techniques is under our 
current research. In our next work, we plan to extend the 
approach to imperfectly nested loops and investigate its 
effectiveness and time complexity. 
 
Wydanie publikacji zrealizowano przy udziale środków 
finansowych otrzymanych z budżetu Województwa 
Zachodniopomorskiego. 
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