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Abstract. The paper describes a new method based on the information-gap theory which enables an evaluation of worst case error predictions of 
the kNN method in the presence of a specified level of uncertainty in the data. There are presented concepts of a robustness and an opportunity of 
the kNN model and calculations of these concepts were performed for a simple 1-D data set and next, for a more complicated 6-D data set. In both 
cases the method worked correctly and enabled evaluation of the robustness and the opportunity for a given lowest acceptable quality rc or a 
windfall quality rw. The method enabled also choosing of the most robust kNN model for a given level of an uncertainty α. 
 
Streszczenie. W artykule opisane jest zastosowanie teorii luk informacyjnych do określania największego błędu modelu kNN w przypadku 
wystąpienia w danych niepewności o określonym poziomie. Przedstawione zostały pojęcia odporności i sposobności modelu kNN oraz pokazane 
zostały przykłady ich wyznaczania dla prostych danych jednowejściowych i bardziej złożonych, sześciowejściowych. W obu przypadkach metoda 
działała prawidłowo, a dodatkowo umożliwiała wyznaczanie najbardziej odpornego modelu kNN przy określonym poziomie niepewności α. 
(Zastosowanie teorii luk informacyjnych do wyznaczania odporności metody najbliższych sąsiadów na niepewność danych). 
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Introduction 
 k-nearest neighbours method (kNN) belongs to the, so 
called, memory based approximation methods. It is one of 
the most important between them and probably one of the 
best described in many versions [1,2,3], and what is 
significant, it is still the subject of new researches [4,5]. 
Other memory based methods can be exemplary: methods 
based on locally weighted learning [1,6] which use various 
ways of samples weighting. Methods widely applied in this 
category are also probabilistic neural networks and 
generalised regression networks [7,8]. 

Learning of function approximators with an application of 
memory-based learning methods is very often an attractive 
approach in comparison with creating of global models 
based on a parametric representation. In some situations 
(for example: small number of samples), building of global 
models can be difficult and then memory-based methods 
become one of possible solutions for the approximation 
task. 

 
k-nearest neighbours method 
 In the kNN method, during calculations of an answer for 
a question point x* only k nearest (in a meaning of an 
applied metric – here Euclidean metric) samples are taken 
into account. In the classic kNN method, the model answer 
is calculated as a mean value of target function values or a 
weighted mean value. In such case, weight values usually 
depend on a distance δ(x*,x) between the question point x* 
and analysed neighbours x, for example: 
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where: the m parameter is taken empirically. The kNN 
method realises a local regression and the answer for the 
considered question point is calculated on the base of a 
local model created for k-nearest neighbours. 
 The main parameter of the kNN method is the number of 
neighbours k that are taken into account. It can be constant 
for entire data set, but in some approaches it can be 
dynamically varied – according to the question point 
location in the input space. 
 One of popular techniques of k evaluation is applying 
‘leave one out’ crossvalidation or applying two distinct data 
sets: training data – that are memorised by the model, and 
testing data – to evaluate the real model error. The best k 

value is the value that gives the lowest test or 
crossvalidation error. Typical plot of a crossvalidation error 
as a function of neighbours number k taken into account is 
presented in Fig. 1b. 
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Fig.1. Exemplary data (a) and plot of a crossvalidation error as a 
function of number of neighbours k (b) 
 

The lowest test or crossvalidation error guarantees the 
lowest real error of the model and the best generalisation. 

 
Model of uncertainty 
 There are a lot of techniques that allow taking data 
uncertainty (both input and output one) into consideration. 
Among them we can mention methods that analyse data 
from a probabilistic point of view [1,2,9]. Other methods 
apply the theory of fuzzy sets [10,11]. In this paper there will 
be applied the information-gap model of uncertainty based 
on the theory described in [12,13,14,15] and on the interval 
analysis [16]. 
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 The information-gap theory enables a prediction of 
bounded worst case errors in the presence of a specified 
level of the uncertainty in the input and output data. The 
method also enables a discrimination between various 
models if there’s need to find the model that is the most 
robust to the data uncertainty. 
 

Interval analysis 
In the paper there will be analysed data that were made 
uncertain by applying an interval expansion of size α in all 
dimensions of the data set (both in input and output 
attributes) [16]. The α parameter describes the unknown 
horizon of uncertainty in the information-gap model (descri-
bed in the next subsection). After expansion each attribute 
becomes an interval number [16] and can be defined as an 
ordered pair of real numbers [a,b] with a < b such that: 

(2)  }:{],[ bxaxba  . 

 During expansion each crisp attribute x is replaced by 

the interval ],[ xx  where x  represents the lower interval 

bound and x  the upper interval bound: 

(3)  ],[],[ αα  xxxx . 

 The special interval number arithmetic is described in 
details in [16]. With its application it is possible to apply kNN 
method absolutely without changing the main algorithm of 
the method. Next section describes some experiments 
where Matlab toolbox INTLAB (created by S.M. Rump and 
described in [17]) was applied for calculations on interval 
numbers. The kNN model created with the application of 
interval arithmetic works correctly both for interval data and 
crisp data. 

 

Information-gap model of uncertainty 
 Data gathered by miscellaneous measurement 
equipment usually are burdened with a certain error. Such 
data can be stored in the form of interval numbers for which 
there exists a possibility of mathematical calculations. 
 Other approach in modelling of the uncertainty 
surrounding each data vector xi, i = 1 ... M, is representing it 
by defining a local information-gap model [14,15]: 
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where:   is the infinity norm in RN defined as: 
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where: xj is the j-th attribute of the vector x (j = 1 ... N) and 
α > 0 is the unknown horizon of uncertainty. L(α,xi) can be 
treated as an unbounded family of hypercuboid sets (for 
infinity norm) of possible xi realisations. 
 Let’s assume that we have 2 normalised distinct data 
sets. First of them will contain training data (although in the 
case of memory methods like the kNN method there is no 
real training process) and each data sample will consist of 
the input vector xk and the target output value yk, k = 1 ... L. 
The second data set will contain testing data and each data 
sample will also consist of the input vector xi and the target 
output value yi, i = 1 ... M. 
 For the crisp data, an error of modelling for the single 
testing sample xi can be evaluated exemplary as: 

  *
iii yy δ , 

where: *
iy  is the model answer for the question point xi and 

a mean absolute error for the entire testing data set can be 
calculated as: 
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 Now, we must take into account that data are uncertain 
so an accuracy of the model should be evaluated in a 
different way. The data are interval values so the accuracy 
will be also the interval value and its lower interval bound 
will be equal to a robustness function and an upper interval 
bound will be equal to an opportunity function [13]. 
Concepts of such functions are introduced by the 
information-gap theory and are described later. 
 Both yi and *

iy  will be interval numbers so their 

subtraction result can be evaluated as: 
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according to the interval arithmetic [16]. The model error will 
be interval number: 

(6)   iii δδδ , , 

where the lower bound can be calculated as: 
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and the upper bound as:  

(8)  |}||,max{| iii ddδ . 

 Fig. 2 illustrates the way of calculating lower and upper 
bound of the model error. 
 Now we can evaluate an interval value for the mean 
absolute error of the entire testing set as: 

   MAEMAEMAE eee , , 

where: 
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 Next, additionally let’s define the notion of the model 
accuracy as: 
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 The accuracy defined in such way changes its value in 
the range from 0 (for model errors approaching infinity) to 1 
(for model errors approaching 0). It is clear that always 

qq  . 

 Now, let’s define an information-gap robustness function 
as equal to q . Let rc be the lowest acceptable model 

quality. The robustness of the model is the greatest horizon 
of uncertainty at which the model quality lower bound is 
equal or greater than rc: 

(10)  cc rqr  :max)(ˆ αα . 
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 The q  value decreases with increasing α (Fig. 4) so the 

robustness increases with decreasing rc: 

  )(ˆ)(ˆ ''
cccc rrrr αα  . 

 Next, we can define notions of the opportunity function 

equal to q  and the opportuneness of the model as the 
lowest horizon of uncertainty at which the model quality 
upper bound is equal or greater than rw value (windfall 
quality): 

(11)  ww rqr  :min)(ˆ αβ . 

 )(ˆ
wrβ  is increasing as rw is getting larger (Fig. 4): 

  )(ˆ)(ˆ ''
wwww rrrr ββ  , 

and it means that increasing the windfall quality of the 
model rw causes an increase in the level of uncertainty 

)(ˆ
wrβ  needed to obtain that windfall. 

 

 

target
value yi

yi
*

δ

δ

δ

δ δ δ

δ

yi
*yi

*

yi
*

yi
*

δ=0

δ=0

δ=0

 
 
Fig.2. Exemplary calculations of the lower and upper bound of the model error 
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Fig.3. Exemplary data and model characteristics for various α values 
 
Experiments 
 In the beginning let’s find out how the kNN method 
works with uncertain data. The crisp data were submitted to 
the interval expansion of the size α in all dimensions of the 
data set (in the way described in the previous section). Fig. 
3 presents data and model characteristics for various α 
values. The kNN model works correctly and it can be 
observed that the model characteristic width increases with 
increasing of the α value. 
 Now, let’s take under consideration the model based on 
the crisp data from Fig. 1a. The number of nearest 
neighbours k is set to 5, and the α value will grow from 0 to 
0.1. We can evaluate the lower and the upper bound of the 
model quality from equation (9), Fig. 4. 
 Fig. 4 can be used to quantify the performance under 
uncertainty of a given model and directly access the 
robustness of the model at any demanded quality. For 
example, by setting rc to 0.9, an error of up to 0.024 can be 

tolerated in all elements of the measured vectors xi, without 
the risk of decreasing quality below 0.9. That is, the 
robustness is )9.0(ˆ crα  = 0.024. Additionally, such level of 

uncertainty provides the opportunity for the model quality of 

up to 0.978, (opportunity function is )978.0(ˆ wrβ  = 0.024). 

 The model robustness notion can also be applied for a 
discrimination between various kNN models. For a certain 
level of uncertainty α, the best will be the model with the 

greatest value of α̂  and the lowest value of β̂ . Fig. 5 
presents the plot of robustness function values for kNN 
models with various nearest neighbour number k and the 
level of uncertainty α set to 0.03. From the figure we can 
see that the most robust (for the uncertainty α = 0.03) is the 
kNN model with k = 5. 
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Fig.4. The lower and the upper bound of the model quality for 
various α values 
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Fig.5. The plot of robustness function values for kNN models with 
various nearest neighbours number k and α = 0.03 
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Fig.6. The lower and the upper bound of the model quality for 
various α values (figure created for ‘cpu’ data) 
 

 Of course, the described method for an evaluation of the 
model robustness can also be applied for a more 
complicated data with a greater number of input attributes. 
Exemplary calculations for the popular benchmark data 
‘cpu’ are presented below. (The benchmark can be found in 
UCI Machine Learning Repository: http://archive.ics.uci.edu/ 
ml/datasets.html.) Data have 6 input attributes, so the first 
performed step was a normalisation. Next, the number k 
was set to 5 and α value was changed from 0 to 0.1. Fig. 6 
presents the robustness function and the opportunity 
function for the ‘cpu’ data. If we set rc to 0.9 we can find the 
model robustness )9.0(ˆ crα  = 0.041. As before, it means 

that an error of up to 0.041 will not decrease quality below 
0.9. 

Conclusions 
 Errors are a natural property of data, so if uncertain data 
are used for a model creation it is important to evaluate the 
robustness to uncertainty of such models. 
 The paper has described an approach based on the 
information-gap theory which enables an evaluation of 
worst case error predictions of the kNN method in the 
presence of a specified level of uncertainty in the data. 
There were presented concepts of the robustness and the 
opportunity of the kNN model and calculations of these 
concepts were performed for the simple 1-D data set and 
next, for the more complicated 6-D data set. In both cases 
(and also in many other experiments realised by the author) 
the method worked correctly and enabled evaluation of the 
robustness and the opportunity for the given lowest 
acceptable quality rc or the windfall quality rw. The method 
enabled also choosing of the best (the most robust) kNN 
model for the given level of uncertainty α. 
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