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Abstract. In this paper, a new hybrid feature extraction method combining adaptive optimal radially Gaussian kernel (AORGK) time-frequency 
representation with two dimensional nonnegative matrix factorization (2DNMF) is proposed for partial discharge (PD) classification. Firstly, AORGK is 
applied to obtain the time-frequency matrices of PD ultra-high-frequency (UHF) signals. Then 2DNMF is employed to compress the AORGK 
amplitude (AORGKA) matrices to extract various feature vectors with different (d1, d2) combinations, i.e. (5, 5), (5, 10), (10, 5) and (10, 10). Finally, the 
extracted features are classified by fuzzy k nearest neighbor (FkNN) classifier and back propagation neural network (BPNN). 600 samples sampled 
from four typical artificial defect models in Laboratory are adopting for testing of the proposed feature extraction algorithm. It is shown that the 
successful rate by FkNN and BPNN are all higher than 80%, and FkNN has superior classification accuracies than BPNN under four circumstances of 
(d1, d2) combinations. In addition, FkNN achieves the highest classification accuracy 93.73% with (10, 5) combination. The results demonstrate that it 
is feasible to apply the proposed algorithm to PD signal classification.  
 
Streszczenie: W artykule przedstawiono nową hybrydową metodę klasyfikacji wyładowań niezupełnych (ang. Partial Discharge), wykorzystującą 
algorytm AORGK (ang. Adaptive Optimal Radially-Gaussian Kernel) o nieujemnej, matrycowej faktoryzacji dwuwymiarowej (ang. 2-Dimensional 
Nonnegative Matrix Factorization). W metodzie wykorzystano także algorytm k najbliższych sąsiadów oparty na teorii zbiorów rozmytych (ang. Fuzzy 
k Nearest Neighbour Classifier) oraz sieci neuronowe (ang. Back Propagation Neural Network). (Hybrydowa metoda analizy obrazu do 
klasyfikacji wyładowań niezupełnych) 
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1. Introduction 

High voltage electrical apparatus such as generators, 
power transformers, gas insulated switchgear (GIS), and 
XLPE cable etc. which are responsible for the generation 
and transmission of power energy are key elements of the 
power grid. The equipment failure would lead to a 
widespread blackout and great economic losses. It has been 
proved that partial discharge (PD) is a symptom and one of 
the main causes of high-voltage insulation failure [1-2]. It is 
of practical value to identify the underlying defects as earlier 
as possible by the diagnosis of partial discharges. 

Since the defect types can be identified by the measured 
PD signals, much attention has been paid to the PD 
classification and recognition [3-5]. Among the existing PD 
detectors, Ultra high frequency (UHF) antenna has many 
advantages such as wide frequency band, high sensitivity, 
and strong anti-interference capability as well, compared 
with traditional pulse current method. In the cited articles, 
independent component analysis (ICA) [6], wavelet packet 
transformation (WPT) [7], and envelope comparison 
technology [8] have been applied for partial discharge UHF 
signals classification in electrical apparatus, showing that 
the UHF approaches can be effectively applied for PD 
classification. As been reported, PD pulse is a typically 
transient and nonstationary signal [9]. Joint time-frequency 
representation (TFR) can provide more comprehensive 
information of PD than time or frequency description alone. 
However, the most time-frequency analysis (TFA) methods 
have some intrinsic shortages. On the one hand, linear TFA 
methods such as short time Fourier transform (STFT), 
Gabor expansion (GS), and wavelet transform (WT), etc. 
cannot describe the instantaneous power spectral density 
(PSD) very well. Moreover, STFT cannot satisfy 
requirements to both high time and frequency resolution due 
to its constant window function [10]; the single wavelet basis 
makes WT difficultly suitable for all PD types [11]. On the 
other hand, quadratic TFA methods, represented by 
Wigner-Ville distribution (WVD), have serious cross-term 
interference when the signal contains multiple components 
in spite of the nice time-frequency resolution [12]. 
Consequently, it is needed to carry out deeper research on 
the time-frequency representation technology of PD signals 
and relevant feature extraction algorithm, to provide robust 

features for PD diagnosis in high voltage equipment.  
In this paper, a new hybrid feature extraction method 

based on adaptive optimal radially Gaussian kernel 
(AORGK) time-frequency representation (TFR) combined 
with two dimensional nonnegative matrix factorization 
(2DNMF) technology is proposed for partial discharge UHF 
signals classification. Firstly, the UHF signals of four typical 
artificial defect models are measured and registered in 
Laboratory. Then AORGK is applied to acquire the 
time-frequency information of the measured UHF signals, 
and 2DNMF is further employed to compress the 
time-frequency amplitude matrices to extract various feature 
matrices. Finally, the extracted features are examined by 
fuzzy k-nearest neighbor (FkNN) classifier and back 
propagation neural network (BPNN).  
 
2. Feature Extraction based on AOGRK and 2DNMF 
2.1 AORGK-TFR 

AORGK is a time-frequency analysis method originally 
proposed by Jones et.al has good resolutions in both time 
domain and frequency domain [13]. AORGK is developed 
and improved based on WVD, which could separate the 
independent term in signal effectively by restraining the 
influence of cross-terms and reflect the time-frequency 
information of original signals accurately.  

AORGK introduces a short time ambiguity function 
(STAF) into the optimal radially Gaussian kernel (ORGK) [14] 
in which only one kernel is designed for the whole signal, to 
solve a problem that ORGK is not suitable for long time 
nonstationary signal processing. The AORGK-TFR of a 
signal s(t) is given by 

(1) 
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where: t – time, τ – time delay, θ – frequency offset, j – prefix 
of imaginary number, opt(t; r, τ) – adaptive optimal kernel 
function (AOKF), A(t; θ, τ) – STAF. STAF is defined as  
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where: w(t) – a symmetrical window function, “*” – complex 
conjugate. The variables τ and θ are usual ambiguity plane 
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parameters. Due to w(u) = 0 while |u|>T (T is the length of 
time window), the ambiguity function is calculated only in the 
interval of [t-T, t+T].  

A high-quality time-frequency representation result is 
obtained when the kernel is well matched to the components 
of a given signal. Accordingly, AOKF opt(t; r, τ) can be 
obtained by solving the following optimization problem:  
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where: σ(ψ) – spread function, ψ – radial angle, 

2 2r    – the radius variable. Spread function σ(ψ) 
controls the spread of the Gaussian at radial angle ψ. The 
angle ψ = arctan(τ/θ) is measured between the radial line 
through point (θ, τ) and the θ axis. The AORGK-TFR for 
discrete signals can also be obtained by the similar 
procedure, more details is acquired in [13].  

In this study, the AORGK-amplitude (AORGKA) matrix 
which is used to represent the original PD pulse is obtained 
as  

(5)                   , ,AORGK AORGKA t w P t w  

 
2.2 2DNMF 

2DNMF is an extension and improvement of NMF. Given 
a data matrix Vm×n with Vij ≥ 0 and a prespecified positive 
integer r < min(m, n), NMF finds two non-negative matrixes 
Wm×r and Hr×n such that 
(6)                     Vm×n ≈Wm×r × Hr×n 
where: Wm×r – the base vector matrix, Hr×n – the coefficient 
matrix. So far many algorithms have been proposed for NMF 
computation such as multiplicative updates (MU) [15], 
projected gradients (PG) [16], and alternating least squares 
(ALS) [17], etc. 

While NMF is applied to extract features from 2D 
AORGKA matrices, the matrices must be transformed into 
1D vectors to achieve a great dimension reduction effect, 
which may lead to a quite high-dimensional vector space 
and huge computation burden. Moreover, the structural 
information hidden inside the AORGKA matrices are also 
destroyed by NMF. With an extension of NMF, 2DNMF 
perform a compression on original AORGKA matrices {A1, 
A2, …, AN} in the horizontal and vertical direction 
simultaneously, where N is the sampling number of PD 
signals. 2DNMF is described briefly as follows [18]:  

(1) The m training AORGKA matrices with a dimension of 
p×q are aligned into a p×qm matrix X = [A1, A2, …, Am]. By 
NMF computation, X can be expressed as 
(7)                  

1 1p mq p d d mq  X L H  

(2) The similar q×pm matrix X' =[A1', A2', … , Am'] is 
constructed by the same m training AORGKA matrices as 
well. X' is written as 
(8)                  

2 2
'q mp q d d mp  X R C  

(3) The d1×d2 feature matrices Dk extracted from the kth 
AORGKA matrices Ak can be obtained as  
(9)                      Dk ≈ LTAkR 

The NMF algorithm used in 2DNMF in the current study 

is PG. The theory and computation steps can be found at 
[16].  
 

3. FkNN Classifier 
In this work, a well-known FkNN classifier originally 

proposed by James et al. [19] is employed to perform PD 
classification. The k nearest neighbor (kNN) rule represents 
one of the most widely used classifiers in pattern recognition, 
which offers many advantages over other classifiers, 
including its simplicity, ease of parallel implementation, 
adaptability, and online learning. For an unknown sample x, 
the kNN classifier searches the k training samples adjacent 
to x and assigns x to the class that appears most frequently 
in the neighborhood of k samples. The similarity between 
two samples x and y in the kNN classifier is normally 
measured by the Euclidean distance dxy, which can be 
expressed as 
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where: xk – the kth feature of sample x, yk – the kth feature 
of sample y.  

The FkNN classifier is an improvement over the kNN 
classifier, which uses the concepts of fuzzy logic to assign 
degree of membership of the samples to different classes 
while considering the distance of its kNNs. In Keller’s 
method, the membership value of the unknown sample x in 
class i is given by 
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where: jjd x x – Euclidean distance between x and xj, 

μi(xj) – the membership value of sample xj for class i. This 
method calculates the membership of the unknown sample 
using the kNN labeled samples’ memberships and similarity 
with the unknown sample. The calculated type of similarity in 

Keller’s algorithm [19] is fixed on 

2

11 m
jd  . In the present 

study, m = 2 is chosen to represent Euclidean 
distance-based similarity measurement. The class label of 
the unknown sample x, i(x) is determined as follows 
(12)                   ( ) arg max( ( ))i

i

i x x  

4. Experimental Arrangement 
Artificial defect models are designed to produce PD 

sample data in the experiments, which are grouped into four 
categories [7, 20]: (1) Internal cavity discharge; (2) Surface 
discharge in oil; (3) Floating electrode discharge in oil; (4) 
Corona discharge in oil. The above PD types are described 
as model G, S, F, C for short.  

The electrode structures corresponding to each type of 
PD are shown in Figure 1. In Figure 1(a), an epoxy board is 
supported by a circular insulating paper and placed on a 
plane electrode to form a gas cavity with a diameter of 38 
mm. The three parts are subjected to firm pressure by two 
organic-glass boards to prevent leaking of surrounding 
insulation oil into the cavity during the experiments. The 
thicknesses of the epoxy board and the circular insulation 
paper are 1 and 0.15 mm, respectively [20]. In Figure 1(b) 
and (c), the epoxy board placed on the plane electrode is 1 
mm thick. A metallic particle with a diameter of 0.3 mm is 
placed at the edge of the epoxy board for the P3 model. In 
Figure 1(d), the distance between the metal needle and 
1mm thick epoxy board is 1mm.  

In Laboratory test, the defect models are all put into a 
test tank filled with insulating oil. The PD pulses are detected 
by an UHF antenna, which has three resonant frequencies 
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equal to 261, 516, and 869MHz, respectively. The pass 
band around all resonant frequencies are approximately 150 
~ 320MHz, 430 ~ 620MHz and 740 ~ 1000MHz while the 
voltage standing wave ratio (VSWR) in all frequency bands 
do not exceed 5. The UHF antenna is connected to an 
amplifier with an overall bandwidth from 300 to 1000 MHz. A 
LeCroy Wavepro 7100 digital oscilloscope is used to display 
and store the PD data. The sampling frequency for recording 
the UHF signals is 5 GS/s.  

 

 
 

 
 

 
 

 
Fig. 1.  Artificial defect models of PD 

1-HV sphere electrode  2-LV plane electrode  3, 9-epoxy board  
4-air gap  5-organic glass plane  6-insulating nut  7-insulating 

bolt  8-cylinder electrode  10-metallic particle 
 
5. Results and Discussion 
5.1 Data pre-processing 

For each type of PD, 150 samples are measured under 
three applied voltages which is approximately 1.3~1.8 times 
of the inception voltage (50 samples per voltage, and overall 
600 samples of 4 PD types). The UHF signals are originally 
measured in 1000ns range to cover the complete 
waveforms. Statistical analysis on the measured waveforms 
shows that all the signals can be expressed by 1000 
samples. Then a segment of 1000 significant samples which 
is from the 2,451th to the 3,450th point is selected as the 
pre-selection process to facilitate the subsequent feature 
extraction. The pre-selection process is shown in figure 2.  
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

0

3

Sampling Number

A
m

pl
it

ud
e(

V
)

0 100 200 300 400 500 600 700 800 900 1000
-3

0

3

Sampling Number

A
m

pl
it

ud
e(

V
)

(b) After pre-selection

(a) Before pre-selection

 
Fig. 2.  Pre-selection of measured UHF signals  

 
Due to existing randomness in PD pulses, there are 

available dispersions in the amplitude of the recorded UHF 
signals. In order to eliminate the influence of signal 
amplitude on AORGK-TFR, a normalization method is 
employed, shown as 

(12)                   
max( )

( )
( )

( )n
x t

x t
x t

  

where: x(t) – original measured UHF signal, max(|x(t)|) – 
maximum absolute value of x(t), xn(t) – normalized signal. 
Figure 3 shows typical UHF signals corresponding to 
various PD types after data pre-processing.  
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Fig. 3.  Typical recorded UHF signals of various PD type 
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Fig. 4.  Typical recorded UHF signals of various PD categories 
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5.2 Classification results 
All the 600 samples are then pre-processed by the 
aforementioned approach. By employing AORGK, 600 
AORGKA matrices are obtained as the time-frequency 
representations of PD recorded signals. The AORGKA 
matrices related to the PD signals in figure 3 are shown in 
Figure 4, revealing that AORGKA matrices associated with 
various PD categories are visibly different. However, the 
dimension of AORGKA matrix in this work is 512×1000 = 
512000 (512 is the sampling number of FFT in discrete 
AORGK computation), which is too large and impossible for 
classification directly. It is necessary to reduce the data 
dimension to an acceptable scale for automated 
classification. In the meantime, the information of AORGKA 
matrix should be preserved as much as possible to obtain a 
brilliant classification performance. 

As described in Section 2.2, 24 samples (6 samples per 
PD type) are randomly selected as the trained matrices, i.e. 
m = 24. Then each 512×1000 dimensional AORGKA matrix 
is compressed into a d1×d2 dimensional feature matrix by 
2DNMF algorithm. In this study, (d1, d2) are assigned as (5, 
5), (5, 10), (10, 5) and (10, 10) respectively, to explore the 
influence of different (d1, d2) combinations on the 
classification performance. Figure 5 gives the extracted 
feature matrices of (5, 5) combinations.  
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Fig. 5.  Typical recorded UHF signals of various PD categories 

 

The feature matrices of 600 samples are firstly 
transformed into vectors before classification. FkNN 
classifier is then responsible for the classification task. The 
experimental 600 samples are randomly partitioned into 300 
training samples and 300 testing samples for 10 times, and 
the average classification rate is served as the final 
diagnosis result. In order to carry out comparison, a widely 
used PD classification classifier back-propagation neural 
network (BPNN) is implemented to the same experimental 
data. In this study, we apply a single hidden-layer network 
with the transfer function of sigmoid to train the BPNN. The 
number of neurons in input layer is equal to the feature 
dimension, and the number of neurons in output layer is 4. 
The number of neurons in hidden layer is determined by an 
empirical equation [13], shown as:  
(13)                     n2 = 2 × n1 + 1 
where: n2 – neuron number in hidden layer, n1 – neuron 
number in input layer. Levenberg-Marquardt algorithm [22] is 
employed to train the BPNN classifier. More details on 
BPNN training can be found in [23].  

The classification results of PD signals obtained by the 
above two approaches are reported in Table 1. It is clear that 

FkNN classifier achieves higher classification rates than 
BPNN under four circumstances of (d1, d2) combinations. In 
addition, FkNN classifier has an obvious advantage over 
partial discharge BPNN, which is its scalability. While a new 
discharge type is introduced into the classification issue, 
FkNN only needs to add a new group of training templates to 
the original training samples. In contrast with BPNN, the 
addition of a new PD type to the trained BPNN implies the 
retraining of the entire network, which is a very 
time-consuming task with huge sample numbers and large 
feature dimension. Thus, FkNN classifier has better 
generalization characteristics over BPNN.  
 
Table 1. Classification results by FkNN classifier and BPNN 

(d1，d2) (5，5) (5，10) (10，5) (10，10) 

FkNN 87.50% 91.47% 93.73% 90.73% 

BPNN 83.57% 84.70% 89.37% 88.67% 

 
It can also be identified from Table 1 that, no matter 

FkNN or BPNN are used, the optimal classification accuracy 
is achieved with (10, 5) combination and (10, 10), (5, 10) 
combinations come to the second place. Besides, (5, 5) 
combination gives the minimum classification accuracy. As a 
result the lower feature dimension does not mean the better 
PD classification accuracy in the proposed feature extraction 
algorithm. Further analysis reveals that the feature 
dimension of (5, 5) combination has been decreased 
dramatically, whereas more information of the original 
AORGKA matrix may lose simultaneously, which generates 
comparatively lower classification accuracy. Though (10, 10) 
combination reserves relatively more information of the 
original AORGKA matrix, it probably introduces some 
redundant information and noises that causes a limitation on 
the classification accuracy in the meantime. The dimensions 
of (5, 10) and (10, 5) combination are the same, but the 
compression process in horizontal and vertical direction is 
not equivalent, which leads to differences in the 
classification accuracies of these two combinations.  

Based on the above observations, it is evident the 
proposed hybrid feature extraction algorithm can be 
effectively applied to partial discharge classification by using 
a superior FkNN classifier compared with traditional BPNN. 
The proposed algorithm would provide a new partial 
discharge analysis tool for online condition monitoring of 
electrical apparatus.  
 

6. Conclusion 
The important conclusions arrived at based on the 

present investigations are for the followings:  
(1) The time-frequency representations obtained by 

AORGK have visibly differences between different PD types, 
which imply the possibilities of AORGK to recognize different 
defect types.  

(2) The feature dimension can be significantly reduced 
by applying 2DNMF which performs projections on the high 
dimensional matrices in the horizontal and vertical direction 
simultaneously. Moreover, the structural information of 
original AORGKA matrix is also preserved at the same time.  

(3) The classification accuracies of FkNN classifier are 
all higher than that by BPNN under four circumstances of (d1, 
d2) combinations, i.e. (5, 5), (5, 10), (10, 5) and (10, 10). The 
highest classification accuracy 93.73% is obtained with (10, 
5) combination. In addition, FkNN classifier has better 
generalization characteristic than BPNN due to its easy 
expansion capability.  
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