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A hybrid color texture image classification method based on 2D 
and semi 3D texture features and extreme learning machine 

 
 

Abstract. Color texture classification is an important step in image segmentation and recognition. The color information is especially important in 
textures of natural scenes. In this paper, we propose a novel approach based on the 2D and semi 3D texture feature coding method (TFCM) for 
color texture classification. While 2D TFCM features are extracted on gray scale converted color texture images, the semi 3D TFCM features are 
extracted on RGB coded color texture images. The proposed approach is tested on two publicly available datasets. Moreover, comprehensive 
comparisons are realized with traditional texture analysis tools. The results show the advantages of the proposed method over other color texture 
analysis methods. 
 
Streszczenie. W artykule zaproponowano nowa metodę klasyfikacji obrazów z kolorowa teksturą wykorzystującą wykorzystującą metody kodowania 
tekstury 2D. Metodę testowano na dwóch przykładach baz danych i porównano z metodami dotychczas stosowanymi. (Hybrydowa metoda 
klasyfikacji obrazów z kolorowa teksturą)  
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1. Introduction 
 Texture analysis is very useful for experiments of image 
classification and identification. Thus, it has long been an area of 
computer vision with active research area spanning image 
processing, pattern recognition, and computer vision, with 
applications to medical image analysis, remote sensing, object 
recognition, industrial surface inspection, document segmentation 
and content-based image retrieval. Texture classification has 
received significant attention with many proposed approaches, as 
documented in comprehensive surveys [1-5]. The ability of a 
human to distinguish different textures is apparent, therefore, the 
automated description and recognition of the texture images is in 
demand.  
 Over the years, many researchers have studied different 
texture analysis methods. Many of these methods represent the 
local behavior of the texture via statistical [6], structural [7] or 
spectral [8] properties of the image. A methodology is presented in 
[9], where second-order probability distributions [2, 4] are enough 
for human discrimination of two texture patterns, has motivated the 
use of statistical approaches. On the other hand, structural 
approaches describe the textures by rules, which govern the 
position of primitive elements, which make up the texture [10]. In 
addition, signal processing methods, such as Wavelet transform 
[11-13], Fourier analysis [8] and Gabor filters [14], were motivated 
by psychophysical researches, which have given evidences that 
the human brain does a frequency analysis of the image [15, 16]. 
These approaches represent the texture as an image in a space 
whose coordinate system has an interpretation that is closely 
related to the characteristics of a texture.  

The texture feature coding method (TFCM) that forms the basis 
for texture features was first discussed by Horng [17] and later 
applied in various application such as tumor detection and 
landmine detection [18, 19]. TFCM is a new texture analysis 
scheme which transforms an original image into a texture feature 
image whose pixel values represent the texture information of the 
pixel in original image. The TFCM is a coding scheme that 
transforms an image into a feature image, in which each pixel is 
encoded by TFCM into a texture feature number (TFN) that 
represents a certain type of local texture. The TFN of each pixel in 
the feature image is generated based on a 3×3 texture unit as well 
as the gray-level variations of its eight surrounding pixels. The TFN 
histogram and TFN co-occurrence matrix are derived to generate 
many texture features for texture classification. The method has 
several remarkable advantages including accurate representation 
and record of target texture, and computational efficiency [19].  

In this paper, we propose a hybrid method where both 2D and 
semi 3D TFCM and Extreme Learning Machine (ELM) is combined 
for efficient color texture classification. ELM was proposed as an 
alternative and effective approach for neural networks. We firstly 
review the TFCM and ELM methods and then we conduct several 
experiments on the various color textures for showing the efficiency 
of the proposed hybrid scheme. Experimental results are promising 
and the comparisons show the superiority of our proposal.    

The rest of this paper is organized as follows. Section 2 
reviews the related works for texture classification. Sections 3 and 
4 review the TFCM based feature extraction mechanism and the 
ELM classifier. In Section 5, we evaluate the capabilities of the 
proposed features with extensive experiments on two texture 
datasets, and present comparisons with current methods. Finally, 
we conclude the paper in section 6.  
 
2. Related works  
 Up to now, numerous feature extraction approaches have been 
proposed for texture image classification. Scale-invariant feature 
transform (SIFT) [20], Histogram of Oriented Gradients (HOG) 
feature and the related methods are some of the representative 
approaches that are widely used in image processing community 
[21, 22]. Moreover, Chellappa et al. used Gaussian–Markov 
random field (GMRF) based features to find some statistical 
relationships among adjacent pixels [23]. Kashyapand Khotanzad 
then proposed the isotropic circular Gaussian–Markov (ICGMRF) to 
achieve rotation invariant texture description [24]. Another 
extension was the isotropic circular GMRF (ACGMRF) designed by 
Deng and Clausi to encode relative orientations of adjacent pixels 
[25]. In addition, methods based on multi-channel filtering or 
wavelet decomposition [26] were also studied. Varma and 
Zisserman [27] introduced text on histograms in MR8 filtered 
response space as features. Sengur [11, 12] used the wavelet 
transform, entropy and energy features for color texture image 
classification with various classifiers. Local binary pattern (LBP), 
which is considered as an effective texture classification 
methodology, was proposed by Ojala et al. [28]. It has many 
properties such as rotation invariance and low computational cost 
[29, 30]. Karabatak et al. investigated the usage of association 
rules on wavelet domain for efficient texture classification [13]. 
Association rules are robust in modeling the relationship in a given 
database. Thus, the adjacent pixels interactions in texture structure 
are modeled in wavelet domain by association rules.  A novel 
approach based on the fractal dimension for color texture analysis 
was proposed by Backes et al. [31]. The proposed approach 
investigates the complexity in R, G and B color channels to 
characterize a texture sample. The authors considered both all 
channels in combination and the correlations between them.  Liu 
and Fieguth [32] introduced the use of random projections (RPs), a 
universal, information-preserving dimensionality-reduction 
technique, to project the patch vector space to a compressed patch 
space without a loss of salient information, claiming that the 
performance achieved by random features can outperform patch 
features, MR8, and LBP features. 
 
3. Texture Feature Coding Method (TFCM) 
 The justification behind the TFCM technique, as proposed by 
Horng in [17], is the translation of an intensity image to a texture 
feature number (TFN) image via differencing in the image domain 
followed by successive stages of vector classification.  
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Fig. 1. 3×3 pixel neighborhood 
 
 Let’s consider a pixel (i, j) in an intensity image and its 
surrounding 3×3 pixel neighborhood that is illustrated in Fig. 1. 
Horng separates the pixels in the neighborhood into horizontal and 
vertical and diagonal connectivity sets. Differences are then 
calculated along each vector in each of these connectivity sets, and 
the resulting two element difference vectors are thresholded at 
some tolerance (ε) into quantized two element vectors taking 
values from the set {−1, 0, 1}, corresponding to negative, no 
change, and positive difference values, respectively. This process 
maps a 3×3 pixel neighborhood to two sets of two 2×1 quantized 
difference vectors. After differencing and thresholding, TFCM maps 
the individual quantized difference vectors to gray-level class 
numbers based on the degree of variation in each vector. Such a 
classification scheme is described in [17] and reproduced in Fig. 2.  

 
Fig. 2 Types of gray-level graphical structure variations and 
corresponding gray-level class numbers (1–4) 

 

In Fig. 2, the falling lines correspond to the quantized difference 
vector values of −1, flat lines correspond to the quantized 
difference vector values of 0, and rising lines correspond to the 
quantized difference vector values of 1. Thus, Fig. 1 provides a 
mapping from each of the quantized difference vectors to gray-level 
class numbers taking values 1–4. Each pair of gray-level class 
numbers is combined into a single initial texture-feature class 
number using the mapping shown in Table I. This mapping takes 
each set of two gray-level class numbers and maps each set to an 
initial feature numbers taking values 1–10. 

 
Table 1 Mapping from Gray level numbers (1-4) to initial class 
numbers (1-10) 

Gray Level Class  
#1 

 1 2 3 4 
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1 1 2 3 4 
2 2 5 6 7 
3 3 6 8 9 
4 4 7 9 10 

 
Finally, we can then map the initial feature numbers calculated 

to a single class number using the mapping shown in Table II. By 
applying the TFCM procedure at each pixel location (i, j) in an 
image, the approach maps the intensity images into 2-D TFN 
images taking discrete values 0–54. 

The extension of the TFCM technique to the 3-D data sets was 
proposed by Torrione et al. [19]. According to the ref. [19], a point 
in a 3-D data set (i, j, k) and the surrounding 26-element 
neighborhood was considered. Thus, the 3x3x3 data cube is 
comprised of 13 unique vectors passing through the point (i, j, k). 
By extending the TFCM approach, Torrione calculated the 
difference vectors along each of the 13 vectors passing through (i, 

j, k) and threshold each vector into the discrete values {−1, 0, 1}. 
Each of the 13 resulting discrete vectors can be assigned one of 
four gray-level class numbers in the order of increasing gray-level 
variation. Instead of directly calculating the initial feature number, a 
mapping of each texture unit vector to a texture feature number 
TFN was considered by Torrione. Given 13 elements, each taking a 
class value from 1 to 4, there are 413 possible combinations. 
Torrione reduces this number in the following way: he considers 
equivalent of those vectors with equal numbers of occurrences of 
the class values (1, 2, 3, 4), independently to their position in the 
vector, thus, by considering translational and rotational invariance, 
the unique TFNs have the number of possibilities expressed by

560
3
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







 
 by using the prime numbers [19].  

 
Table 2 Mapping from primary (l) and secondary (2) initial feature 
numbers to TFN 

Initial feature number 
1 

 1 2 3 4 5 6 7 8 9 10 
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1 0 1 2 3 4 5 6 7 8 9 
2 1 10 11 12 13 14 15 16 17 18 
3 2 11 19 20 21 22 23 24 25 26 
4 3 12 20 27 28 29 30 31 32 33 
5 4 13 21 28 34 35 36 37 38 39 
6 5 14 22 29 35 40 41 42 43 44 
7 6 15 23 30 36 41 45 46 47 48 
8 7 16 24 31 37 42 46 49 50 51 
9 8 17 25 32 38 43 47 50 52 53 
10 9 18 26 33 39 44 48 51 53 54 

 
The extension of the TFCM technique to the 3-D data sets was 

proposed by Torrione et al. [19]. According to the ref. [19], a point 
in a 3-D data set (i, j, k) and the surrounding 26-element 
neighborhood was considered. Thus, the 3x3x3 data cube is 
comprised of 13 unique vectors passing through the point (i, j, k). 
By extending the TFCM approach, Torrione calculated the 
difference vectors along each of the 13 vectors passing through (i, 
j, k) and threshold each vector into the discrete values {−1, 0, 1}. 
Each of the 13 resulting discrete vectors can be assigned one of 
four gray-level class numbers in the order of increasing gray-level 
variation. Instead of directly calculating the initial feature number, a 
mapping of each texture unit vector to a texture feature number 
TFN was considered by Torrione. Given 13 elements, each taking a 
class value from 1 to 4, there are 413 possible combinations. 
Torrione reduces this number in the following way: he considers 
equivalent of those vectors with equal numbers of occurrences of 
the class values (1, 2, 3, 4), independently to their position in the 
vector, thus, by considering translational and rotational invariance, 
the unique TFNs have the number of possibilities expressed by
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 by using the prime numbers [19].  

 
3.1. Co-occurrence Matrices 
 Many of the features mentioned previously are based upon the 
co-occurrence matrices of output TFN images. A co-occurrence 
value ),|,(  drqp on a 2-D image can be defined as follows [19]: 

 (1)            t

d

N

rqN
drqp

),(
),|,( ,, 

     

where ),|,(  drqp  depends on the gray-level threshold ε, two 

discrete TFN values q and r, a distance d, an orientation θ, a 

counting function ),(,, rqN d   and a normalization term Nt. 

Here, θ is one of {0, 45, 90, 135, 180, 225, 270, 315} degrees. 
 
3.2. Feature Extraction 
 Once an intensity image has been transformed to a TFN image 
by using Table 2, it is possible to apply the concepts analogous to 
gray-level histograms and gray-level co-occurrence matrices [19] to 
the TFN image and extract several features. These features are 
mean convergence, code variance, code entropy, uniformity, first-
order difference moment, first-order inverse difference moment, 
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second order difference moment, second-order inverse difference 
and four energy distribution values from the co-occurrence matrix. 
Thus, a 12-element feature vectors is generated based on these 
co-occurrence matrices and TFN histograms. 
 
4. Extreme Learning Machine 
 A simple learning algorithm for single-hidden layer feedforward 
neural networks (SLFNs) called extreme learning machine (ELM) 
was firstly proposed by Huang et al. in the beginning of the last 
decade [33]. Beside ELM’s learning speed, it also obtains better 
generalization performance when we consider the traditional feed 
forward network learning with back-propagation (BP) algorithm. 
The algorithm of the ELM is explained as following [33]; 
For a given N arbitrary input-output relation ሺݔ௜	, ௜ݔ ௜ሻ, whereݐ ൌ
ሾݔ௜ଵ, ,௜ଶݔ … , ௜௡ሿ்ݔ 	∈ 	ܴ௡ and ݐ௜ ൌ ሾݐ௜ଵ, ,௜ଶݐ … , ௜௡ሿ்ݐ 	 ∈ 	ܴ௠, standard 
SLFNs with ෩ܰ hidden neurons and activation function g(x) are 
mathematically modeled as  

(2)                         ∑ .௜ݓ௜݃൫ߚ ௝ݔ ൅ ܾ௜൯ ൌ ,௝݋ ݆ ൌ 1, . . . , ܰ,ே෩
௜ୀଵ  

where ݓ௜ ൌ ሾ߱௜ଵ, ߱௜ଶ, … , ߱௜௡ሿ் is the weight vector connecting the ith 
hidden neuron and the input neurons, ߚ௜ ൌ ሾߚ௜ଵ, ,௜ଶߚ … ,  ௜௠ሿ் is theߚ
weight vector connecting the ith hidden neuron and output neurons, 
and ܾ௜is the threshold of the ith hidden neuron. ݓ௜.  ௝ denotes theݔ
inner product of ݓ௜ and ݔ௝. The output neurons are chosen linear in 
this paper. 
That standart SLFNs with ෩ܰ hidden neurons with activation function 
g(x)can approximate theseNsamples with zero error means that 
∑ ฮ݋௝ െ ௝ฮݐ ൌ 0ே෩
௝ୀଵ , i.e., there exist ߚ௜,	ݓ௜and ܾ௜ such that  

(3)                       ∑ .௜ݓ௜݃൫ߚ ௝ݔ ൅ ܾ௜൯ ൌ ,௝ݐ ݆ ൌ 1, . . . , ܰ.ே෩
௜ୀଵ   

The above N equations can be written compactly in Eq. 4: 

ߚܪ                                          (4) ൌ ܶ  

where  
,ଵݓሺܪ … , ,ே෩ݓ ܾଵ, … , ܾே෩, ,ଵݔ … , ேሻݔ ൌ

൥
݃ሺݓଵ. ଵݔ ൅ ܾଵሻ ⋯ ݃ሺݓே෩. ଵݔ ൅ ܾே෩ሻ

⋮ ⋯ ⋮
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H is called the hidden layer output matrix of neural network; the ith 
column of H is the ith hidden neuron’s output vector with respect to 
inputs ݔଵ, ,ଶݔ … ,  .ேݔ

 

 
Fig. 3 Examples of each texture class. 
 
5. Experiments 

To evaluate the validity of proposed approach, we conducted 
experiments using two color texture image databases. First 
database consists of texture images selected from [12]. A total of 
1600 samples grouped into 16 texture classes were considered. 
Each database entry class is a set of 16 texture samples of 64x64 

pixels size, each one extracted from a particular texture pattern 
with overlapping. Fig. 3 shows examples of texture images that are 
given in ref. [34]. While we used 80 % of the database for training 
the proposed hybrid scheme, the 20 % of the database was used 
for testing purposes. 
 Second database, called as USPTex, consists of a set of 
natural texture images acquired using a digital camera with 
512x384 pixels resolution [31]. Texture classes considered are 
typically found daily, such as beans, rice, tissues, road scenes, and 
various types of vegetation, walls, clouds, soils, blacktop, and 
gravel. There are 180 different texture types (Fig. 6) and each 
database entry class is a set of 12 texture samples of 128x128 
pixels size. Instead of using this database directly, we constructed 
a new database by using one of the each texture sample. Similar to 
the previous database, samples of 64x64 pixels size were obtained 
randomly for each texture class with an overlapping window. We 
produced 30 texture samples for each texture class. So, we have 
total of 5400 samples grouped into 180 classes. 66.67 % of the 
database (3600 samples) for training the proposed hybrid scheme, 
the 33.33 % of the database (1800) was used for testing the 
proposed methodology. 
 The 2D TFCM features were extracted for each texture class 
as described in Section 3. Moreover the semi 3D TFCM features 
were obtained with using the following idea.  
 Let’s consider the 13 vectors passing through a center pixel of 
a 3x3x3 cube that was originally proposed by Torrione. Some of 
these 13 vectors passing though the center pixel are actually in the 
2D plane [19]. Please refer to [35] for these 13 directions on a 
3x3x3 cube. Thus, we can reduce the number of these 13 vectors 
to an appropriate number for reducing the size of Table II and 
subsequent computation cost. When we eliminate the direction of 
these vectors that are in the 2D plane, we have chance to reduce 
the number of TFN. But in this work, we just considered the 
diagonal vectors passing through the center pixel for extra reducing 
the number of vectors and constructed a similarity with the 2D 
TFCM procedure.  An illustration is given in Fig.4 for 4 diagonal 
directions.  
 

 
Fig. 4 3D directions 

 
 Once the diagonal directions are determined as shown in Fig. 
4, similar to 2D TFCM procedure, the directions are grouped into 
two subsets (red and green diagonals). We assumed the red 
diagonals as horizontal and vertical direction and the green 
directions as two diagonal vectors in 2D TFCM. After determining 
the related vectors, the same coding and feature extraction 
mechanism in 2D TFCM is considered. Thus, this procedure is 
called as “semi 3D” feature extraction.    
 
5.1. Evaluation 
 To evaluate the performance of the proposed hybrid 2D and 
semi 3D TFCM and ELM methodology, we designed a two-step 
evaluation. First, we evaluated each 2D and semi 3D TFCM feature 
in order to determine the number of descriptors n that best 
characterizes the texture and its influence on the results of both 
databases. In the sequence, to provide a better evaluation of the 
proposed methodology, we performed a comparison with other 
color texture methods found in the literature. For this comparison, 
the following methods are considered: Wavelet entropy and energy, 
signatures [36], and wavelet energy correlation signatures [13]. A 
brief description of each method is presented as follows. 
 The usage of Wavelet transform (WT) and Adaptive neuro-
fuzzy inference system (ANFIS) for color texture classification 
problem was investigated [12]. The investigated scheme was 
composed of a wavelet domain feature extractor and an ANFIS 
classifier. Both entropy and energy features were combined in 
wavelet domain. 
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Van de Wouwer et al. has defined the wavelet energy 
correlation signatures [36]. The authors captured the energy 
distribution of the wavelet coefficients over the scale, sub band and 
color space for m = n and the others ( nm  ) represent the 
covariance between different color spaces. 
 Histogram ratio features (HRF) use the concept of co-
occurrence in color histograms to extract meaningful information of 
a color texture [37]. It computes the 3D color histogram of a given 
texture. Then, it constructs a 1-D histogram from the 3D color 
histogram and extracts the ratio features as pairs of histogram bins 
combined with the corresponding count ratios.  
 

 
Fig. 5 Examples of each texture class considered in the Natural 
Textures database 
 
 The Linear prediction model (LPM) used in [38] makes a 
quantitative comparison of auto spectra of luminance and 
combined chrominance channels of IHLS color space. The auto 
spectra is obtained using power spectrum estimator by the 2D 
multichannel non-symmetric half plane autoregressive (2D NSHP 
AR) model. To measure the similarity of two spectra the symmetric 
version of Kullback–Leibler divergence is used. A K-NN classifier is 
constructed with this distance. 
 The Fractal Dimension (FD) approach investigates the 
complexity in R, G and B color channels to characterize a texture 
sample [31]. Investigation of all channels in combination, taking into 
consideration the correlations between them is proposed. This 
approach uses the volumetric version of the Bouligand–Minkowski 
Fractal Dimension method. 
 
6. Results 
 In this paper, first the discrimination ability of the proposed 
features is evaluated. As we mentioned in Section 3.2, there are 
totally 12 texture features. By visual assessment after several trials, 
we realized that several features are not efficient enough for 
discriminating the all texture classes. Therefore this redundant 
information is eliminated for the sake of reducing the size of the 
feature vector. The eliminated features are the first three energy 
distribution values respectively. Thus, we have 9 features for each 
texture image for subsequent classification stage.  
 For constructing the 2D TFCM features, we converted the color 
image to gray scale image and for constructing the semi 3D 

features, we considered the RGB domain texture images 
respectively. For both 2D and semi 3D planes, we totally have 18 
features. For first texture database, we have a 1600x18 feature 
matrix and for second texture database, we have 5400x18 feature 
matrix.  
 There are 500 hidden nodes assigned for ELM algorithm. 
Various number of hidden nodes for ELM algorithm is considered 
but we have not recorded any significant performance 
improvements. 10 trials have been conducted for all the algorithms 
and the average results. The sigmoid activation function is 
considered in the hidden layer.  
 Table 3 presents the results provided by the proposed features 
in comparison to other color texture methods considered for the 
first texture database. For accuracy, we considered the percentage 
of images correctly classified in their respective classes. Its results 
are also impressive in terms of discrimination ability. Results clearly 
show that 2D and semi 3D TFCM is more accurate in the 
classification of the first texture datasets as it presents the higher 
accuracy.  

 
Table 3 Performance comparison with Energy correlation 
signatures and WT and ANFIS approach 

Methods 
Number of 
Features 

Accuracy (%) 

Energy Correlation 
Signatures 

18 93.50 

WT and ANFIS 18 97.63 
Proposed  18 98.67 

 
 We also experimented with the second dataset and the related 
comparisons are given in Table 4. As expected, 2D and semi 3D 
TFCM features present an inferior performance in comparison to 
Histogram Ratio Features (HRF), The Linear prediction model 
(LPM) and The Fractal Dimension (FD). As previously stated, this 
result is due to the reduced number of 2D and semi 3D features. 
Still, the number of 2D and semi 3D features is the one which 
presents the smallest number of descriptors at all. Between all 
methods, histogram ratio features (HRF) presented the lowest 
success rate in second databases. Its number of descriptors was 
not given as it depends on the color histogram of the image. 
Basically, the method considers only histogram bins with counts of 
more than 0.1% of the number of pixels in the given image. The 
linear prediction model (LPM) yielded the third best accuracy. 
85.92% classification accuracy is obtained on the second 
database. On the hand, the FD yielded the second best result when 
we consider the HRF and LPM results. As we can see from Table 
2, 99 features are used in FD procedure. Finally, the best accuracy 
is obtained with the proposed method. Average 97.82 % accuracy 
is recorded. Moreover, the proposed methodology yielded this high 
accuracy with only 18 features.     
 
Table 4 Results yielded by the proposed method and several 
traditional texture analysis techniques. 

Methods 
Number of 
Features 

Accuracy 
(%) 

Histogram Ratio Features (HRF) - 48.60 
The Linear prediction model (LPM) - 85.92 
The Fractal Dimension (FD) 99 96.57 
Proposed 18 97.82 

 

7. Conclusions  
 In this paper, we propose a hybrid method where both 2D and 
semi 3D TFCM and ELM is combined for efficient color texture 
classification. ELM was proposed as an alternative and effective 
approach for neural networks. We evaluate our approach on two 
publicly available texture database and we give several 
comparisons with the traditional texture analysis techniques. 
According to the experimental results our proposal yielded the best 
accuracy for two databases. The combination of the semi 3D TFCM 
features constructed a robust structure for modeling the various 
textures.  
 It is worth to mention that ELM is an alternative and quite 
efficient approach to neural networks. It does not need any iteration 
to converge the minimum gradient point. It reduces the computation 
cost and consequent training period.  
 Finally, the proposed 2D and semi 3D TFCM signatures are 
capable of discriminating different classes with considerable 
quality, thus overcoming a traditional color texture analysis method.  
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