
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012 143

Zbigniew HANDZEL

Uniwersytet Jagielloński w Krakowie

Implementing the rate monotonic scheduling algorithm
for heterogeneous processors

Abstract. The paper discusses task scheduling issues in real-time systems with hard time constraints. In the paper, we propose to use rate
monotonic scheduling for heterogeneous multiprocessor systems. Moreover, for the sake of load balancing we propose to use a genetic algorithm.

Streszczenie. W artykule rozważono zagadnienia szeregowania zadań w systemach czasu rzeczywistego z ostrymi ograniczeniami czasowymi.
Rozważono możliwości wykorzystania metody rate monotonic scheduling w przypadku heterogenicznych systemów wieloprocesorowych. Ponadto w
celu równoważenia obciążenia poszczególnych jednostek obliczeniowych zaproponowano wykorzystanie algorytmu genetycznego. (Implementacja
algorytmu szeregowania według monotonicznego tempa dla heterogenicznych procesorów).

Keywords: task scheduling, multiprocessor systems, heterogeneous processors, genetic algorithms.
Słowa kluczowe: szeregowanie zadań, systemy wieloprocesorowe, procesory heterogeniczne, algorytmy genetyczne.

Introduction
 At present, real-time computer systems constitute a
separate and well-defined class of industrial computer
systems which differ in many important aspects from the
general purpose computer systems. In the case of real-time
computer systems with hard time constraints, the time of
task performance is the most crucial parameter which
requires a special consideration. In the case of hard real-
time systems, it is not enough that a given task delivers
results which are logically correct, but additionally these
results must be delivered on time. If the logically correct
results obtained during the computational process are
delivered after the predefined time constraints, the obtained
results are no longer valid. Moreover, if the time constraints
are not met in the case of the hard real-time system, this
can result in severe damages, catastrophes and serious
economic losses or even a loss of human lives [1].
 This is the main reason why real-time systems with hard
time constraints must be designed and developed with
great attention. In many cases some formal methods must
be used in order to ensure that all the tasks which are
performed in the system will always meet their time
constraints in any possible conditions and scenarios of the
system operation [2].
 These issues have contributed to a considerable
development of task scheduling and allocation methods and
theory, which provide answers to questions concerning
where and when a given task must be performed in order to
meet its time constraint. In the case of industrial hard real-
time systems, the most commonly encountered tasks are
independent, pre-emptive and periodic. At the beginning of
the execution of each task the system reads the actual
values of the input signals from the sensors, then some
computations are performed according to the control
algorithms, and in the end the computed values of control
signals are sent to the actuators. Such tasks are performed
periodically, i.e. for each task there is given the value of its
period T and its performance time C, which is calculated for
the worst case scenario. The C/T ratio determines the
fraction of time which the processor spends on the
performance of the given periodic task, so it is also a value
of the processor load coefficient [3].
 Until now, various real-time task scheduling algorithms
have been proposed. In the case of a set of independent,
pre-emptive and periodic tasks the most popular task
scheduling algorithm, which is implemented in most of real-
time operating systems, is the Rate Monotonic Scheduling
(RMS).

Basic properties of rate monotonic scheduling
 The rate monotonic scheduling algorithm belongs to the
broader class of static task scheduling algorithms and is
used for the purpose of scheduling a set of independent,
pre-emptive and periodic tasks. For each task that is to be
scheduled we must know the value of its period T and the
worst case performance time C, so that the value of the
processor load coefficient could be calculated as C/T [4].
 The scheduling procedure is based on systems of
priorities. The priorities are assigned to the task according
to the rule that the shorter the period of the given task, the
higher priority value it obtains. The reason for it is that the
tasks with shorter values of their periods have less time to
wait for the beginning of their performance, because they
are very close to their time constraints, so their execution
must begin as soon as possible in order to meet their time
constraints. The only way to achieve this is to assign
appropriately high values of priorities to the tasks with
shorter values of their periods [5].
 If more than one task is in the ready state, the task with
the highest priority value is currently performed. If the task
with the higher priority value enters into the ready state, the
currently performed task is pre-empted and a new coming
task is performed. The pre-empted task can be resumed
only in the situation when there is no other task of a higher
priority value in the ready state.
 If the set of the tasks being scheduled is given and the
characteristics of the tasks are known, an important
question is whether the time constraints of all the tasks will
always be met. This question is answered by the Liu and
Layland theorem which is given by the following formula

(1) 












N

i

N

i

i N
T

C

1

1

12

 In the inequality (1), N is the number of the tasks
scheduled. The inequality (1) delivers only a sufficient
condition for the set of schedulable tasks. However, the
condition (1) is not a necessary condition for the set of
schedulable tasks. Moreover, if the condition (1) is not
fulfilled, it does not automatically follow that the set of tasks
is not schedulable. In such a case one must first of all check
whether the necessary condition is fulfilled. The necessary
condition is given by the following formula

(2) 



N

i i

i

T

C

1

1

144 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012

 Moreover, for each task of the scheduled set of tasks it
must be checked, whether their time constraints are met in
the worst case scenario, i.e. under the conditions when all
the tasks enter into the ready state at the same moment. If
under the worst-case conditions the performance of all the
scheduled tasks is ended before the elapse of their time
constraints, it means that the given set of tasks is
schedulable under any circumstances. In order to prove
this, one has to calculate for each task the time of its
execution end. If the time of the execution end of each task
is shorter than its time deadline, it means that the set of
tasks is schedulable [5].
 To calculate the time of the execution end of a periodic
task the recurrent formula can be used. If we consider the
lowest priority task, then the first estimation of its time of the
execution end is assumed as the sum of its execution time
and the times of execution of all the other tasks. This results
from the fact that before the execution of the lowest priority
task can be started, all the other tasks must be performed
at least once. Thus, the first estimation of the execution end
time of a task is given by the following formula

(3) 



N

i
iCt

1
0

Then, we must systematically repeat the recurrent
procedure, which is given by the following formula

(4) 


 









N

i i

m
im T

t
Ct

1
1

In the formula (4), the symbol  X denotes the smallest

natural number which is greater than or equal to X. The
recurrent procedure is repeated until the following condition
is fulfilled

(5)
mm tt 1

In such a case we consider time tm as the time of the
execution end of the lowest priority task. If this time is
shorter than the deadline of the lowest priority task, we can
consider this task schedulable under any circumstances,
because it proved to be schedulable in the worst-case
scenario.
 The recurrent procedure, which is discussed above,
must be repeated for all the tasks and all the tasks in the
worst-case scenario must be proved to be able to end their
executions before the elapse of their deadlines. Only if this
condition is met, the given set of periodic tasks may be
considered schedulable.
 In its original form the RMS algorithm was proposed for
the purpose of scheduling a set of periodic, pre-emptive and
independent tasks only for one single processor. The paper
puts forward a proposition of application of the RMS
algorithm also for multiprocessor systems.

Task scheduling for multiprocessor systems
 Currently, the multiprocessor solutions are becoming
more and more popular due to their capacity to supply
greater amounts of computational power than single
processor systems, which is absolutely necessary in many
hard real-time applications. The multiprocessor systems
can be divided into homogeneous and heterogeneous
systems. In the homogeneous multiprocessor systems all
processors available in the system have the same
parameters and, what is especially relevant, they have the
same computational power. On the other hand, in the
heterogeneous multiprocessor systems the processors of

the system differ in their properties and their levels of
available computational power are significantly different.
 In the paper, a three-processor heterogeneous system
is considered. There is also given a set of N periodic,
independent and pre-emptive tasks that are to be
scheduled onto the three-processor heterogeneous system.
The tasks are denoted as: z1, z2, z3, ... , zN. The periods Ti
(i = 1, 2, 3,..., N) are known for each task. Likewise, known
are the worst-case execution times for each task. The
execution times are denoted for the first processor as CI

i (i =
1, 2, 3,..., N), for the second processor as CII

i (i = 1, 2, 3,...
,N), and for the third processor as CIII

i (i = 1, 2, 3,..., N).
Thus, we obtain three different values of processor load
coefficients: CI

i/Ti for the first processor, CII
i/Ti for the

second processor, and CIII
i/Ti for the third processor.

 The objective is to find such a task allocation scheme
that all the tasks could be scheduled with the RMS
algorithm within the processors to which they are allocated.
It is very significant to which processor each of the tasks is
allocated. There are some allocation schemes that are not
admissible, because there exists at least one task that is
not schedulable, as it can not meet its deadline. On the
other hand, there are such allocations that can guarantee
that all the tasks are schedulable and their execution times
elapse before their deadlines.
 In order to find the task allocation scheme that is both
schedulable and can guarantee a sufficient balancing of the
values of processor load coefficients, we propose to use a
computational technique of evolutionary algorithms [6].
In order to implement a computational technique based on
the evolutionary algorithm two main factors should be
determined [7]. The first of them involves the mode of
coding the solutions on the genetic material of the
individuals [8, 9]. For this purpose we have chosen the
mode of coding which is directly based on the natural
number system, because it is simple to both implement and
interpret [10 – 12].
 Each of the tasks was associated with one gene. The
value of the genes could only be equal to one, two, or three.
If the value of the gene is equal to one, it means that the
task which is associated with that gene must be allocated to
the processor P1. Similarly, if the value of the gene is equal
to two, it means that the task which is associated with that
gene must be allocated to the processor P2. And finally, if
the value of the gene is equal to three, it means that the
task which is associated with that gene must be allocated to
the processor P3.
 Another relevant matter concerns an adequate selection
of the fitness function formula [13]. We define the fitness
function as a sum of the values of time by which the
deadlines of the tasks are exceeded. If all the tasks meet
their deadlines, then the value of the fitness function is
equal to zero [14]. In any other cases if at least one task
exceeds its deadline, the value of the fitness function is
greater than zero. The aim of the evolutionary algorithm is
to find such an allocation scheme of the tasks for which the
fitness function is equal to zero [15, 16].
 The initial population of the evolutionary algorithm was
generated randomly and it was composed of 100
individuals. The individuals underwent genetic operations of
mutation and selection. During the mutation operation the
randomly chosen gene obtained a random value of one,
two, or three, so the allocation scheme of the task
associated with this gene was changed randomly. The
genetic operation of selection was realized as a tournament
selection, during which the individuals were coupled into
pairs and from each pair only the individual of the lower
value of the fitness function passed to the next generation.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012 145

 After the elapse of a few hundred of generations, the
admissible tasks allocation schemes were obtained. The
following subsets of tasks were allocated to three
heterogeneous processors P1, P2 and P3.
 In Fig. 1 we present a plot of load coefficient values for
the processor P1, which were obtained with the use of the
evolutionary algorithm. It can be concluded that the
convergence of the evolutionary algorithm is sufficiently
good, which allows to find the appropriate solution after the
elapse of a relatively short period of time.

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P1

Fig. 1. Plot of load coefficient values obtained for the processor P1

 Similarly, in Fig. 2 we present load coefficient values
obtained for the processor P2. Also, in Fig. 3 we present
load coefficient values obtained for the processor P3.

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P2

Fig. 2. Plot of load coefficient values obtained for the processor P2

0

0,2

0,4

0,6

0,8

1

1,2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P3

Fig. 3. Plot of load coefficient values obtained for the processor P3

Sumary
 In the paper we have demonstrated that a computational
technique based on the use of evolutionary algorithms can
be effectively implemented for the purpose of task allocation
in a multiprocessor system. The allocation schemes that are
found by the evolutionary algorithm are admissible,
because the hard time constraints are met for each task.
 The obtained results can be easily extended to cover
the cases of any number of heterogeneous processors
simply by changing the mode of coding the solutions on the
genetic material of the individuals. Moreover, the case of
homogeneous processors can be treated as a special case
of heterogeneous processors such that the computational
power of all processors is equal. Thus the results obtained
for the case of heterogeneous processors are more general
and can be easily extended also to the case of
homogeneous processors.
 Further work in this domain will concentrate on the
extension of the obtained results to include multiprocessor
tasks [17]. Multiprocessor tasks are tasks that need access
to more than one processor at the same time in order to be
executed [18]. The issues related to multiprocessor task
scheduling are far more complicated than scheduling
single-processor tasks and require the development of
appropriate methods for multiprocessor task allocations in
multiprocessor systems [19]. It is of relevance to notice that
the rate monotonic scheduling algorithm can also be
extended to multiprocessor tasks, which is relatively
straightforward in the case of homogeneous multiprocessor
systems but not in the case of heterogeneous processors.

REFERENCES
[1] Hsueh W., L in K. J., Scheduling real-time systems with end-

to-end timing constraints using the distributed pinwheel model,
IEEE Transactions on Computers, vol. 50, n. 1 (2001), 51-67

[2] La la J. H., Harper R. E., Architectural principles for safety-
critical real-time applications, Proceedings of the IEEE, vol. 82,
n. 1 (1994), 25-41

[3] Ramamr i tham K., S tankov i c J. A., Scheduling algorithms
and operating systems support for real-time systems,
Proceedings of the IEEE, vol. 82, n. 1 (1994), 55-67

[4] Sh in K. G., Ramana than P., Real-time computing: A new
discipline of computer science and engineering, Proceedings of
the IEEE, vol. 82, no. 1 (1994), 6-24

[5] Sha L., Ra jkumar R., Sa thaye S. S., Generalized rate-
monotonic scheduling theory: A framework for developing real-
time systems, Proceedings of the IEEE, vol. 82, n. 1 (1994),68-
82

[6] Ga je r M., Accelerating the rate of evolutionary processes with
the use of constant learning, Przeglad Elektrotechniczny, 87
(2011), n. 1, 204-209

[7] Ga je r M., Implementation of evolutionary algorithms in the
discipline of Artificial Chemistry, Electrical Review, 87 (2011),
n. 4, 198-202

[8] Ga je r M., The implementation of the evolutionary
computations in the domain of electrical circuits theory,
Przeglad Elektrotechniczny, 87 (2011), n. 6, 150-153

[9] Ga je r M., Visualization of particle swarm dynamics with the
use of Virtual Reality Modeling Language, Przeglad
Elektrotechniczny, 87 (2011), n. 11, 20-24

[10] Ga je r M., The analysis of impact of learning on the rate of
evolution in the case of a multimodal fitness function, Przeglad
Elektrotechniczny, 86 (2010), n. 2, 24-29

[11] Ga je r M., The implementation of the evolutionary algorithm
for the analysis of nonlinear electrical circuits, Przeglad
Elektrotechniczny, 86 (2010), n. 7, 342-345

[12] Ga je r M., The optimization of power flow in high-voltage
transmission lines with the use of the evolutionary algorithm,
Electrical Review, 86 (2010), n. 8, 239-244

[13] Ga je r M., The optimization of load distribution with the use of
the evolutionary algorithm, Electrical Review, 86 (2010), n. 11a,
265-270

[14] Ga je r M., Task scheduling in real-time computer systems
with the use of an evolutionary computations technique,
Przeglad Elektrotechniczny, 86 (2010), n. 10, 293-298

[15] Ga je r M., Determining the working points of bipolar
transistors with the use of the evolutionary strategy, Przeglad
Elektrotechniczny, 87 (2011), n. 12a, 124-128

[16] Ga je r M., Reduction of thermal transmission losses with the
implementation of a genetic algorithm, Przeglad
Elektrotechniczny, 88 (2012), n. 3a, 129-130

[17] S tan ley P. Y., Chung K. P., Duncan K. W., On-line
scheduling of equal-length intervals on parallel machines,
Information Processing Letters, 112 (2012), 376-379

[18] Aspnes J., Yitong Y., Randomized load balancing by joining
and splitting bins, Information Processing Letters, 112 (2012),
309-313

[19] Wenhua L., Zhenkun Z., Sufang Y. W., Online algorithms for
scheduling unit length jobs on parallel-batch machines with
lookahead, Information Processing Letters, 112 (2012), 292-
297

[20] Handzel Z., Latawiec K. J., A simulation approach to
statistical evaluation of periodic task scheduling in a real-time
computer system Methods and Models in Automation and
Robotics (MMAR), 2010 15th International Conference on
Digital Object Identifier: (2010) , 271 – 274

[21] Manabe Y., Aoyagi S. - A Feasibility Decision Algorithm for
Rate Monotonie Scheduling of Periodic Real-Time Tasks,
Proceedings of the IEEE, vol. 95, n. 1 (1995), 212-218

Author: dr inż. Zbigniew Handzel, Uniwersytet Jagielloński w
Krakowie, Wydział Zarządzania i Komunikacji Społecznej, ul. Prof.
S. Łojasiewicza 4, 30-348 Kraków, E-mail:
zbigniew.handzel@uj.edu.pl

