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Abstract. The paper discusses task scheduling issues in real-time systems with hard time constraints. In the paper, we propose to use rate 
monotonic scheduling for heterogeneous multiprocessor systems. Moreover, for the sake of load balancing we propose to use a genetic algorithm.      
 
Streszczenie. W artykule rozważono zagadnienia szeregowania zadań w systemach czasu rzeczywistego z ostrymi ograniczeniami czasowymi. 
Rozważono możliwości wykorzystania metody rate monotonic scheduling w przypadku heterogenicznych systemów wieloprocesorowych. Ponadto w 
celu równoważenia obciążenia poszczególnych jednostek obliczeniowych zaproponowano wykorzystanie algorytmu genetycznego. (Implementacja 
algorytmu szeregowania według monotonicznego tempa dla heterogenicznych procesorów). 
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Introduction 
 At present, real-time computer systems constitute a 
separate and well-defined class of industrial computer 
systems which differ in many important aspects from the 
general purpose computer systems. In the case of real-time 
computer systems with hard time constraints, the time of 
task performance is the most crucial parameter which 
requires a special consideration. In the case of hard real-
time systems, it is not enough that a given task delivers 
results which are logically correct, but additionally these 
results must be delivered on time. If the logically correct 
results obtained during the computational process are 
delivered after the predefined time constraints, the obtained 
results are no longer valid. Moreover, if the time constraints 
are not met in the case of the hard real-time system, this 
can result in severe damages, catastrophes and serious 
economic losses or even a loss of human lives [1]. 
 This is the main reason why real-time systems with hard 
time constraints must be designed and developed with 
great attention. In many cases some formal methods must 
be used in order to ensure that all the tasks which are 
performed in the system will always meet their time 
constraints in any possible conditions and scenarios of the 
system operation [2]. 
 These issues have contributed to a considerable 
development of task scheduling and allocation methods and 
theory, which provide answers to questions concerning 
where and when a given task must be performed in order to 
meet its time constraint. In the case of industrial hard real-
time systems, the most commonly encountered tasks are 
independent, pre-emptive and periodic. At the beginning of 
the execution of each task the system reads the actual 
values of the input signals from the sensors, then some 
computations are performed according to the control 
algorithms, and in the end the computed values of control 
signals are sent to the actuators. Such tasks are performed 
periodically, i.e. for each task there is given the value of its 
period T and its performance time C, which is calculated for 
the worst case scenario. The C/T ratio determines the 
fraction of time which the processor spends on the 
performance of the given periodic task, so it is also a value 
of the processor load coefficient [3]. 
 Until now, various real-time task scheduling algorithms 
have been proposed. In the case of a set of independent, 
pre-emptive and periodic tasks the most popular task 
scheduling algorithm, which is implemented in most of real-
time operating systems, is the Rate Monotonic Scheduling 
(RMS). 
 

Basic properties of rate monotonic scheduling 
  The rate monotonic scheduling algorithm belongs to the 
broader class of static task scheduling algorithms and is 
used for the purpose of scheduling a set of independent, 
pre-emptive and periodic tasks. For each task that is to be 
scheduled we must know the value of its period T and the 
worst case performance time C, so that the value of the 
processor load coefficient could be calculated as C/T [4]. 
 The scheduling procedure is based on systems of 
priorities. The priorities are assigned to the task according 
to the rule that the shorter the period of the given task, the 
higher priority value it obtains. The reason for it is that the 
tasks with shorter values of their periods have less time to 
wait for the beginning of their performance, because they 
are very close to their time constraints, so their execution 
must begin as soon as possible in order to meet their time 
constraints. The only way to achieve this is to assign 
appropriately high values of priorities to the tasks with 
shorter values of their periods [5]. 
 If more than one task is in the ready state, the task with 
the highest priority value is currently performed. If the task 
with the higher priority value enters into the ready state, the 
currently performed task is pre-empted and a new coming 
task is performed. The pre-empted task can be resumed 
only in the situation when there is no other task of a higher 
priority value in the ready state. 
 If the set of the tasks being scheduled is given and the 
characteristics of the tasks are known, an important 
question is whether the time constraints of all the tasks will 
always be met. This question is answered by the Liu and 
Layland theorem which is given by the following formula 
 

(1)                              












N

i

N

i

i N
T

C

1

1

12     

  

 In the inequality (1), N is the number of the tasks 
scheduled. The inequality (1) delivers only a sufficient 
condition for the set of schedulable tasks. However, the 
condition (1) is not a necessary condition for the set of 
schedulable tasks. Moreover, if the condition (1) is not 
fulfilled, it does not automatically follow that the set of tasks 
is not schedulable. In such a case one must first of all check 
whether the necessary condition is fulfilled. The necessary 
condition is given by the following formula 
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 Moreover, for each task of the scheduled set of tasks it 
must be checked, whether their time constraints are met in 
the worst case scenario, i.e. under the conditions when all 
the tasks enter into the ready state at the same moment. If 
under the worst-case conditions the performance of all the 
scheduled tasks is ended before the elapse of their time 
constraints, it means that the given set of tasks is 
schedulable under any circumstances. In order to prove 
this, one has to calculate for each task the time of its 
execution end. If the time of the execution end of each task 
is shorter than its time deadline, it means that the set of 
tasks is schedulable [5]. 
 To calculate the time of the execution end of a periodic 
task the recurrent formula can be used. If we consider the 
lowest priority task, then the first estimation of its time of the 
execution end is assumed as the sum of its execution time 
and the times of execution of all the other tasks. This results 
from the fact that before the execution of the lowest priority 
task can be started, all the other tasks must be performed 
at least once. Thus, the first estimation of the execution end 
time of a task is given by the following formula 
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Then, we must systematically repeat the recurrent 
procedure, which is given by the following formula 
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In the formula (4), the symbol  X  denotes the smallest 

natural number which is greater than or equal to X. The 
recurrent procedure is repeated until the following condition 
is fulfilled 
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In such a case we consider time tm as the time of the 
execution end of the lowest priority task. If this time is 
shorter than the deadline of the lowest priority task, we can 
consider this task schedulable under any circumstances, 
because it proved to be schedulable in the worst-case 
scenario. 
 The recurrent procedure, which is discussed above, 
must be repeated for all the tasks and all the tasks in the 
worst-case scenario must be proved to be able to end their 
executions before the elapse of their deadlines. Only if this 
condition is met, the given set of periodic tasks may be 
considered schedulable. 
 In its original form the RMS algorithm was proposed for 
the purpose of scheduling a set of periodic, pre-emptive and 
independent tasks only for one single processor. The paper 
puts forward a proposition of application of the RMS 
algorithm also for multiprocessor systems.   
 
Task scheduling for multiprocessor systems 
 Currently, the multiprocessor solutions are becoming 
more and more popular due to their capacity to supply 
greater amounts of computational power than single 
processor systems, which is absolutely necessary in many 
hard real-time applications. The multiprocessor systems 
can be divided into homogeneous and heterogeneous 
systems. In the homogeneous multiprocessor systems all 
processors available in the system have the same 
parameters and, what is especially relevant, they have the 
same computational power. On the other hand, in the 
heterogeneous multiprocessor systems the processors of 

the system differ in their properties and their levels of 
available computational power are significantly different. 
 In the paper, a three-processor heterogeneous system 
is considered. There is also given a set of N periodic, 
independent and pre-emptive tasks that are to be 
scheduled onto the three-processor heterogeneous system. 
The tasks are denoted as: z1, z2, z3, ... , zN.  The periods Ti 
(i = 1, 2, 3,..., N) are known for each task. Likewise,  known 
are the worst-case execution times for each task. The 
execution times are denoted for the first processor as CI

i (i = 
1, 2, 3,..., N), for the second processor as CII

i (i = 1, 2, 3,... 
,N), and for the third processor as CIII

i (i = 1, 2, 3,..., N). 
Thus, we obtain three different values of processor load 
coefficients: CI

i/Ti for the first processor, CII
i/Ti for the 

second processor, and CIII
i/Ti for the third processor. 

 The objective is to find such a task allocation scheme 
that all the tasks could be scheduled with the RMS 
algorithm within the processors to which they are allocated. 
It is very significant to which processor each of the tasks is 
allocated. There are some allocation schemes that are not 
admissible, because there exists at least one task that is 
not schedulable, as it can not meet its deadline. On the 
other hand, there are such allocations that can guarantee 
that all the tasks are schedulable and their execution times 
elapse before their deadlines. 
 In order to find the task allocation scheme that is both 
schedulable and can guarantee a sufficient balancing of the 
values of processor load coefficients, we propose to use a 
computational technique of evolutionary algorithms [6]. 
In order to implement a computational technique based on 
the evolutionary algorithm two main factors should be 
determined [7]. The first of them involves the mode of 
coding the solutions on the genetic material of the 
individuals [8, 9]. For this purpose we have chosen the 
mode of coding which is directly based on the natural 
number system, because it is simple to both implement and 
interpret [10 – 12]. 
 Each of the tasks was associated with one gene. The 
value of the genes could only be equal to one, two, or three. 
If the value of the gene is equal to one, it means that the 
task which is associated with that gene must be allocated to 
the processor P1. Similarly, if the value of the gene is equal 
to two, it means that the task which is associated with that 
gene must be allocated to the processor P2. And finally, if 
the value of the gene is equal to three, it means that the 
task which is associated with that gene must be allocated to 
the processor P3. 
 Another relevant matter concerns an adequate selection 
of the fitness function formula [13]. We define the fitness 
function as a sum of the values of time by which the 
deadlines of the tasks are exceeded. If all the tasks meet 
their deadlines, then the value of the fitness function is 
equal to zero [14]. In any other cases if at least one task 
exceeds its deadline, the value of the fitness function is 
greater than zero. The aim of the evolutionary algorithm is 
to find such an allocation scheme of the tasks for which the 
fitness function is equal to zero [15, 16]. 
 The initial population of the evolutionary algorithm was 
generated randomly and it was composed of 100 
individuals. The individuals underwent genetic operations of 
mutation and selection. During the mutation operation the 
randomly chosen gene obtained a random value of one, 
two, or three, so the allocation scheme of the task 
associated with this gene was changed randomly. The 
genetic operation of selection was realized as a tournament 
selection, during which the individuals were coupled into 
pairs and from each pair only the individual of the lower 
value of the fitness function passed to the next generation. 
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 After the elapse of a few hundred of generations, the 
admissible tasks allocation schemes were obtained. The 
following subsets of tasks were allocated to three 
heterogeneous processors P1, P2 and P3. 
 In Fig. 1 we present a plot of load coefficient values for 
the processor P1, which were obtained with the use of the 
evolutionary algorithm. It can be concluded that the 
convergence of the evolutionary algorithm is sufficiently 
good, which allows to find the appropriate solution after the 
elapse of a relatively short period of time.  
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Fig. 1. Plot of load coefficient values obtained for the processor P1 

 

 Similarly, in Fig. 2 we present load coefficient values 
obtained for the processor P2. Also, in Fig. 3 we present 
load coefficient values obtained for the processor P3. 
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Fig. 2. Plot of load coefficient values obtained for the processor P2 
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Fig. 3. Plot of load coefficient values obtained for the processor P3 
 
Sumary 
 In the paper we have demonstrated that a computational 
technique based on the use of evolutionary algorithms can 
be effectively implemented for the purpose of task allocation 
in a multiprocessor system. The allocation schemes that are 
found by the evolutionary algorithm are admissible, 
because the hard time constraints are met for each task. 
 The obtained results can be easily extended to cover 
the cases of any number of heterogeneous processors 
simply by changing the mode of coding the solutions on the 
genetic material of the individuals. Moreover, the case of 
homogeneous processors can be treated as a special case 
of heterogeneous processors such that the computational 
power of all processors is equal. Thus the results obtained 
for the case of heterogeneous processors are more general 
and can be easily extended also to the case of 
homogeneous processors. 
 Further work in this domain will concentrate on the 
extension of the obtained results to include multiprocessor 
tasks [17]. Multiprocessor tasks are tasks that need access 
to more than one processor at the same time in order to be 
executed [18]. The issues related to multiprocessor task 
scheduling are far more complicated than scheduling 
single-processor tasks and require the development of 
appropriate methods for multiprocessor task allocations in 
multiprocessor systems [19]. It is of relevance to notice that 
the rate monotonic scheduling algorithm can also be 
extended to multiprocessor tasks, which is relatively 
straightforward in the case of homogeneous multiprocessor 
systems but not in the case of heterogeneous processors. 
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