
280 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012

Shahram JAMALI
 1
, Shiva RAZZAGHZADEH

2

Department of Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran(1), Young Researchers Club, Ardabil Branch,
Islamic Azad University, Ardabil, Iran (2)

GLBAI: Global Load Balancing Using Agents' Identifiers in Grid
Environment

Abstract. In a grid environment the resource management, task scheduling and also load balancing are essential functionalities provided by
software infrastructure. Recently, intelligent agent technology has provided an adaptive and scalable framework for management and scheduling of
dynamic resources in the grid environment. In this approach an agent is a representative of a grid resource that is supported by a software system.
This paper presents a new agent-based method, called GLBAI, for the improvement of global load balancing. While previous works assume that all
existing agents in the environment have identical capabilities, this paper considers different capabilities for different agents. It proposes an agent
identifier that indicates the agent's capabilities. The agents cooperate with each other to balance workload using a service advertisement and
discovery mechanism in which agent's capability information are passed in the form of the identifier. Simulation results show that GLBAI reduces
application execution time, maximizes resource utilization and offers more efficient load balancing service.

Streszczenie. W artykule przedstawiono nową metodę agentową o nazwie GLBAI, do zarządzania zasobami energii w sieci. Metoda ma na celu
ulepszenie zbalansowania globalnego obciążenia sieci, poprzez uszeregowanie różnych agentów pod względem ich możliwości zasobowych i
nadanie odpowiedniego identyfikatora. Agenci współpracują między sobą w celu zbalansowania obciążenia oraz wykorzystania informacji zawartych
w identyfikatorach. Badania symulacyjne wskazują, że system GLBAI redukuje czas wykonania programu, maksymalizuje wykorzystanie zasobów
oraz oferuje lepszy zbalansowanie obciążenia. (GLBAI dla sieci energetycznej – system balansowania globalnym obciążeniem sieci
energetycznej, wykorzystujący identyfikatory agentów)

Keywords: Grid, load balancing, agents, task allocation, agent identifier.
Słowa kluczowe: sieć, balansowanie obciążeniem, agenci, alokacja zadań, identyfikator agenta.

Introduction

Grid computation is a kind of distributed calculations that
constructs a bridge not only for geographical distances but
also among organizations, different machine architecture
and software. It makes possible for everyone who is
connected to grid, the indefinite calculation power, the
possibility of cooperation with others and access to different
kinds of information. The main viewpoint of grid is to
establish dynamic virtual organizations via resources
sharing in a coordinated and secure way among users,
universities and organizations in order to form a huge virtual
computational/communicational bed so that it can be used
for solving complicated problems which need a huge
amount of data processing. The existence of
heterogeneous resources which are geographically
distributed and also the abundant number of these
resources cause the resource management and load
balancing to be more essential and important. The aim is to
prevent some resources to be overloaded, while some
others are low utilized.

Based on the concentration degree, the load scheduling
algorithms can be divided into two types: centralized and
decentralized. In centralized algorithms there is a site which
acts as a central controller. Its task is monitoring the task
scheduling. Whenever the task allocation cost is low, this
algorithm is benefit, but whenever the size of system
increases, the bottleneck problem is posed. In load
balancing, based on decentralized scheduling, all sites
share in task allocation. This kind of algorithm has high and
better fault tolerance [1, 2, 3]. In another classification, we
can consider the load balancing algorithms in the forms of
static, dynamic and hybrid. The static policies often use the
FCFS (first-come-first-served) algorithm and devote the
tasks to the suitable resources based on simple information
from system. On the other hand, dynamic policies often
utilize genetic algorithm and they perform task allocation
based on the present state of the system. Finally the hybrid
algorithms utilize the combination of dynamic and static
policies switch to each of them in an appropriate time [4, 5].
Recently, intelligent agent technology has found
applications in management and scheduling of dynamic
resources in the grid environment [6]. In this approach an

agent is a representative of a grid resource that is
supported by a software system. In this paper we presents
a new agent-based method, called GLBAI, for the
improvement of global load balancing. While Cao and her
coworkers assume in [6] that all existing agents in the
environment have identical capabilities, this paper
considers different capabilities for different agents. It
proposes an agent identifier that indicates the agent's
capabilities. The agents cooperate with each other to
balance workload using a service advertisement and
discovery mechanism in which agent's capability
information are passed in the form of the identifier. GLBAI
decreases the number of searching steps to find effective
agents by the use of agent's identifier and it also prevents
from useless request sending to ineffective agents. The
result of simulation shows that the GLBAI decreases the
required time for task allocation and service discovery. It
improves average utilization of the grid resources which in
turn leads to decreased task execution time. Load
balancing level offered by this approach is more than the
basic approach proposed by Cao et al. in [6] which is called
Cao algorithm in this paper.

The rest of the paper is organized as follows. Section 2
presents a fast review over the recent works around task
scheduling and load balancing issues in the grid
environment. In section 3, we bring our proposed approach
describing its details. Section 4 compares the proposed
mechanism with Cao algorithm through a simulative study
by using Gridsim [7] simulator and finally section 5
concludes the paper.

Related works

Load balancing algorithms can be divided into two parts:
the local and global [6]. Whenever the number of tasks
entering to the environment is low, the FCFS algorithm is
usually employed to locally schedule the tasks. On the other
hand, if the number of resources increases and the
environment is vast and in a large scale, the global load
balancing algorithm will be suitable. This policy represents a
suitable function by service advertisement and discovery
too [6, 8, 9]. Another study done in this regard is method
which is based on branch and bound. This algorithm is

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012 281

based on tree model and proposes a dynamic load
balancing policy. In this case after numbering of the nodes,
each node selects an interval containing the number of
node's children for itself. Then some of the tree children are
put aside by the use of some formulas and pruning and
finally the load balancing is achieved. This method is
repeated up to getting the optimum response. This is the
only shortcoming of this strategy [10]. Some of the hybrid
methods also have been proposed for making load
balancing. One of these methods named static which
collects the information of each node via agents then it
delivers the information to the dispatcher. In the next step,
the dispatcher itself finds suitable and effective node by
doing a set of calculations then it allocates the task to that
node. The other method namely dynamic one, transfers the
information of each node to dispatcher via agent whenever
the nodes state change. Then the dispatcher selects the
effective node by comparison of this information with
previous one [5]. The only shortcoming of this method is
that, switching between the dynamic and static state
increases the overhead. Among the other studies done
concerning with load balancing is using ant colony. In this
method ants move forward randomly and wonderingly and
they also interact with each other in their way. Whenever
the ants see their children in their way and at the same
time, when they find the environment imbalanced, they
ignore their own children which interference in these
circumstances. Then they commit suicide in order to make
the load balancing. In this method the ants move with m
pace. At the end of m pace, the load balancing is made

[11]. Another important load balancing also executes its
algorithm based on intelligent agents. In this method each
agent is sign of a local resource. In upper steps the agents
unite to make global load balancing. This method uses
FCFS algorithm (whenever the number of tasks is low) and
genetic algorithm (whenever the number of tasks is high) to
make local load balancing. These algorithms represent
suitable solutions for dynamic scheduling but in the vast
environments, they are not capable. Therefore; in this
condition, the global load balancing is used. It uses the
service advertisement and discovery method too. This is the
case that each agent makes ACT (agent capability table) for
itself. This table represents the necessary information for
global load balancing establishing. The main advantage of
this method is that it doesn't suffer from bottleneck [6].
Scheduling algorithms in load balancing can be in the form
of clairvoyant and non-clairvoyant [12]. Clairvoyant
algorithm has information about job characteristics such as
time servicing etc. This algorithm devotes the given job to
the appropriate node by taking into consideration of these
characteristics, but non-clairvoyant one has no information
about the jobs therefore this algorithm doesn't contain a
regular method to allocate the jobs to the resources.

The GLBAI Method

In this section we describe our proposed mechanism. As
the first step, we introduce the environment in which we
establish the proposed algorithm. This work adopts the
environment assumed in [6] but tries to make it even more
realistic to better reflect the heterogeneous nature of the
grid environment. As shown in Fig. 1, the environment
employed in [6] contains a broker which acts as a head of
the group.

It takes over supervising the whole collection of agents.
The next member is a coordinator which itself is a kind of
agent and conducts the sub-hierarchy. This part delivers the
required information for making decision to the agents.
Finally the agents act as tree leaves and are the first
service providers. As Fig. 1 shows, this is multi-agent

environment in which the connections between these
agents are feasible via communication layer, coordination
layer and local management layer. These layers are also
the structure of each agent. In this figure, the position of
broker, agent and coordinator in hierarchy is different, but
their function and capability are assumed to be identical.
Although agents have different names in this tree hierarchy,
all of them are a same kind of agents. They are ready to
give service according to user's request. All of the agents
are equipped to PACE (performance application capability
engine) and this makes it possible for them to be able to
predict the request execution speed and time of programs
execution too because of its searches in the mentioned
paper.

Fig.1. Environment model used by [6].

We think that, the environment proposed in [6] suffers
from two problems. The first problem has roots in an
unrealistic assumption made in that paper. Fig. 1 and
explanations given about, expresses that the whole existing
agents in the environment have identical capabilities and
only their position in the tree structure is different. Obviously
this assumption doesn’t seem accurate in the
heterogeneous environment of grid in which the existing
resources are heterogeneous and the capabilities are
different. The second problem of [6] is that when a service
is required for a user, primarily the resource supplier of this
service is searched locally. If this service is found, the
process of searching ends successfully; otherwise, the
information in tables GACT and LACT should be searched
to found the suitable resource. It seems that this method
makes service discovery time very long and prolongs the
time of achieving the load balancing.

Our proposed method considers above mentioned
limitations to give a perfect solution. In order to solve the
first problem, we consider different processing capabilities
for the existing resources in the environment. This means
that the agents that are located in different positions may
have different processing power and even they possibly will
have different functions. Since the existence of different
capabilities in the agents leads to different services by
them, consequently, the user can also receive appropriate
responses from the environment and agents for his
expected services. To address the second problem agents
employ a specific data structure, called agent's identifier, to
advertise their capabilities. An identifier consists of 16 bits
which have been organized in 5 different fields, as shown in
Fig. 2. The 1-bit Busy/Idle field indicates that the agent is

either idle or busy just now. If the agent is busy the value of
this bit will be 1 otherwise it will be 0. The 2-bit Resource
power filed specifies the power of resources (agents).

Larger numbers refers to more capabilities in the agents. By
putting 3 in this field the agent is advertised as a powerful
agent and 2 and 1 indicate average and weak resource
powers respectively. It should be mentioned that the notions
of powerful, average and weak may differ from one
experiment to other one. The 4-bit Node number field is a

282 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012

positive integer number that specifies the position of each
resource (node number) in the tree hierarchy. Unused is a

1-bit field that is reserved for future possible extensions.
And finally 8-bit STAR field (Successful Task Allocation

Rate) indicates the number of tasks that have been served
successfully in the current agents during past 5 seconds.
The proposed environment can be observable in Fig. 3.

Fig.2. Format of identifier.

Fig.3. Proposed heterogeneous environment model.

The way of using this identifier and resource power has
been explained by Algorithm 1. At the beginning, every
existing agent in the environment fills various fields of its
identifier by using local information. Then it sends the
identifier to the head of its group. When the user sends its
request to the environment in order to get service, this
request primary is given to the head of the group or broker.
Since the head of the group acts as a supervisor, it employs
its sub-group to provide the requested services for the user.
In this way broker first checks the Busy/Idle field of the
agents exist in its subgroup. After finding idle resources, the
header checks other fields of their identifiers to determine
whether the agents have enough resources power to
answer the request or not. Those agents which lack this
specification are put aside and among the selected agents,
those agents that have higher power to represent services
and also those ones whose position are near to the head of
the group have higher priorities. Finally user request is
allocated to the resource with highest priority. It should be
mentioned that all above steps for head of the group are
exerted to all coordinators (C) which they also themselves
conduct a sub-hierarchy. This is because all the requests
from the head of the groups conduct toward the leaf nodes
so that the requests can be answered by local resources. In
this way the problem of bottleneck is not occurred. If two
agents have same amount of processing capacity, the
agent is selected that its node number is lower or
equivalently is closer to the head of the group.

Algorithm 1. GLBAI Algorithm

1. // Initialization Phase
2. for i=1 to n do // n is the number of agents
3. {
4. Create the identifier of agenti // Format of the 8-

bit identifier is as in Fig. 2
5. Fill various field of the identifier
6. Send the identifier to the head of the group
7. }
8. ---

9. // User Request Submission
10. // if a user sends a request pass the request to the

header (B according to Fig. 1)
11. // Header should check the sub-hierarchy i.e C according

to Fig. 1
12. for i=2 to n do
13. {
14. if agenti[0] = 1 then // agenti is busy
15. {
16. ignore this agent
17. }
18. if agenti[0] = 0 then // agenti is idle
19. {
20. check agenti[1,2];
21. if agenti[1,2]=01 then
22. agent = powerful;
23. else if agenti[1,2]=10 then
24. agent= average;
25. else
26. agent= weak;
27. Select the resource that has more power
28. if agenti[1,2] = agenti[1,2] // agents i and j

have same priorities
29. {
30. check agenti[3,4,5,6] and agentj[3,4,5,6],

find the location of each agent and
31. give priority to agents that is closer
32. }
33. Check the STAR field and give more priority to

agents with more successful history
34. }
35. }
36. Allocate the request to the agent that has the

highest priority.

Simulation results and analysis

In this section, we demonstrate the simulation results of
our proposed algorithm. The simulation has been done in
the Gridsim environment [7]. As a comparison reference
point for the proposed algorithm, we implemented the Cao
algorithm in Gridsim environment and validated it through
extensive simulation scenarios.

Fig.4. Grid environment used in our simulation.

A. Simulation setup

In contrast to Cao algorithm which assumes that all
nodes (agents) in the environment have identical
capabilities, we consider a more realistic grid environment
in which various nodes (agents) have different capabilities
i.e. they have different number of processors. As an
example scenario consider the tree of Fig 4. In which there
are 12 agents in 3 levels. Based on processing capacity
each agent is labeled as weak, average or powerful agent,
where their processing capability is assumed to be 200, 600
and 900 MIPS respectively. Table 1 shows the assigned
processing capacity for each agent. Consider 50 tasks each
one including 300 instructions enter to be served in the grid
environment. The overhead involved in handling of each
task is assumed to be 3 seconds that arises from
communication delays. To show promise of the proposed

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12a/2012 283

algorithm we simulate the environment once under GLBAI
algorithm and then under Cao algorithm [6] to compare their
performance by using Gridsim simulator.

B. Simulation results

By using the results generated by Gridsim it can be
extracted that which task has been executed in each agent
and how long it has taken. Using these results and
according to equation (1) utilization of various resources are
have been computed as shown in Table 2 for both GLBAI
and Cao methods. According to this table average
utilization of resources is 0.94 under GLBAI algorithm while
Cao algorithm leads to average utilization of 0.80. This table
shows that S2, S7 and S8 have higher utilization comparing
to other resources. This is reasonable since according to
Table 1 these resources are the most powerful resources in
the grid and hence their utilization are more effective than
the other resources. On the other hand S9 and S11 which
are weak resources devote the minimum utilization. It
should be mentioned that since S1, S3, S4 and S5 are head
agents they don’t attend in tasks execution and involves
only in efficient allocation of arriving tasks to appropriate
agents.

 Table 1. Assumed Recourses power.

Table 2. Simulation results: resource utilization.

Agents
Utilizations

Using GLBAI Using Cao [6]

U1 head of the groups 0.81

U2 1 0.81

U3 head of the groups 0.77

U4 head of the groups 0.82

U5 head of the groups 0.82

U6 0.92 0.78

U7 1 0.84

U8 1 0.82

U9 0.91 0.80

U10 0.92 0.81

U11 0.91 0.75

U12 0.92 0.78

Fig.5. Load balancing levels of GLBAI and Cao Algorithms.

To address the load balancing issue in GLBAI and Cao
approaches we apply equation (2)-(3) to Table 2 and extract
the load balancing level i.e β. It is clear that when

utilizations of various resources are near to each other load
balancing level i.e. β will approach to 1. Figure 5 shows load

balancing levels computed for GLBAI and Cao algorithms.
We see that load balancing level GLBAI is 95 percent but in
the Cao methods it is 90 percent. And finally simulation
results show that the execution time of these submitted 50
tasks is 16.55 seconds for Cao method while GLBAI
decreases it to 7.84 seconds.

(1) ni
timeexecutiontotal

agenteachfortimebusy
Ui ,....2,1

where: U – utilization of various resources.

(2)
n

Ui

Uavg

n

i

 1

where: n – number of available resources, Uavg– average

utilization.

(3)
Uavg

A
1

where: β– load balancing level A=

2

1

)(

n

UiUavg
n

i

Conclusion and future works
This paper proposed a new method to reduce resource

advertisement and discovery time and also improvement of
load balancing level. It employed a special data structure
called agent identifier for this purpose. The proposed
method applied to a heterogeneous environment in which
each node had a different processing capacity. The result of
simulation showed that the exertion of proposed method
can reduce the task execution time. Furthermore, it was
shown that by this method we can improve the load
balancing level and resources utilization.

REFERENCES

[1] Fei Y., Changjun J., Rong D., Jianjun Y.: "Grid resource

management policies for load-balancing and energy-saving by
vacation queuing theory", Elsevier Computers and Electrical
Engineering, 2009.

[2] Shivaratri NG., Krueger P., Singhal M.: "Load distributing for
locally distributed systems Computer", 1992.

[3] Zaki MJ., Parthasarathy WLS.: "Customized dynamic load
balancing for a network of workstations", Journal of Parallel
Distributed Computer, 1997.

[4] Li Y., Yang Y., Ma M., Zhou L.: "A hybrid load balancing strategy
of sequential tasks for Grid computing environments", Elsevier,
future generation computer systems, 2009.

[5] Yan K.Q., Wang S.C., Chang C.P., Lin b.: "A hybrid load
balancing policy underlying grid computing environment",
Elsevier Computer Standards & Interfaces, 2007.

[6] Cao J., Spooner D.P., Jarvis S.A., Nudd G.R.: "Grid load
balancing using intelligent agents", Elsevier, Future Generation
Computer Systems, 2005.

[7] Luther A., Nadiminti K., Buyya R.: "A. Net-based Enterprise Grid
system and Framework-User Guide for Alchemi 1.0", Technical
report, The university of Melborn, Australia, 2005.

[8] Cao J., Kerbyson D. J., Nudd G. R.: "Dynamic application
integration using agent-based operational administration,
International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology, 2000.

[9] Cao J., Kerbyson D. J., Nudd G. R.: "High and mobile-agent
systems, International Journal of Software Engineering and
Knowledge Engineering", 2001.

[10] Mezmaz M., Melab N., Talbi E.G.: "An efficient load balancing
strategy for Grid-based branch and bound algorithm", Elsevier
parallel computing, 2007.

[11] Salehi M.A., Deldari H., Dorri B.M.:"Balancing Load in a
Computational Grid Applying Adaptive Intelligent Colonies of
Ants", Journal of informatica, 2008.

[12] Zikos S., Karatza H. D.: "Communication cost effective
scheduling policies of non-clairvoyant jobs with load balancing
in a grid", Elsevier Journal of Systems and Software, 2009.

Authors: prof. dr Shahram Jamali, Department of Computer
Engineering, University of Mohaghegh Ardabili, Ardabil, Iran, E-
mail: jamali@iust.ac.ir; Shiva RazzaghZadeh, Young Researchers
Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran, E-mail:
Shiva.razzaghzadeh@gmail.com,

Resource number Resource power

S2, S7, S8 Powerful

S6, S10, S12 Average

S9, S11 Weak

mailto:jamali@iust.ac.ir
mailto:Shiva.razzaghzadeh@gmail.com

