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Abstract. To achieve the rotor radial displacement self-sensing for a bearingless switched reluctance motor (BSRM), a new displacement estimation 
method using least squares support vector machine (LS-SVM) was proposed. Firstly, the working principle and mathematic of a 3-phase 12/8 pole 
BSRM was introduced in brief. Then taking advantage of LS-SVM with better solution for small-sample learning problem and strong generalization 
ability, two LS-SVMs were trained off-line to obtain two efficient nonlinear mapping structures to express the dynamic behavior of BSRM. The LS-
SVM training data set is comprised of representative experimental data with current {i | i = (isa1, isa2, ima)} and rotor position  as inputs and the 
corresponding displacements {D | D=(α, )}as outputs. As well as giving a detailed explanation of the new method, simulation and experimental 
results were presented. It shows that the proposed LS-SVM-based displacement self-sensing method has high precision and operation efficiency.  
 
Streszczenie. W artykule przedstawiono uczący się estymator przesunięcia dla bezłożyskowego silnika o przełączanej reluktancji (BSRM), 
wykorzystujący metodę LS-SVM (ang. Least Square Support Vector Machines). Opisano zasadę działania i model matematyczny silnika BSRM 3-
fazowego 12/8 biegunowego. W celu uzyskania efektywnej struktury mapowania nieliniowego do określenia stanów dynamicznych, zastosowano 
dwa algorytmy, które zostały nauczone offline. Estymator poddano weryfikacji symulacyjnej i eksperymentalnej. (Zastosowanie metody LS-SVM w 
określaniu przemieszczenia w bezłożyskowym silniku o przełączanej reluktancji BSRM) 
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Introduction 

Bearingless switched reluctance motors (BSRMs) with 
simply doubly salient structure and combined character-
istics of switched reluctance motors and magnetic bearings, 
makes it provide some unique features that suitable for 
running at high and super-high speed applications like 
flywheels. Many researchers are devoted to BSRMs’ study 
[1-9], mainly on structure design[1], [2], electromagnetic 
analysis [3], [4], mathematics modeling [5], [6], and control 
strategy [7-9]. Recently, bearingless switched reluctance 
generators  as a new hot topic is investigated in [10]. 

In BSRM system, rotor displacement must be measured 
to ensure the stable suspension. In practical magnetic 
suspending systems, displacement is often measured by 
eddycurrent sensors. Nevertheless, traditional sensors 
require periodic calibration and maintenance, sensitive to 
temperature and electro-magnetic noise, as well as tended 
to cause cost and complexity Increment. As a result the 
reliability and the critical speed of BSRM are restricted. To 
eliminate the displacement sensors, several self-sensing 
methods for magnetic bearing systems have been reported 
[11-13]. The fundamental principle of self-sensing is the 
extraction of displacement information from circuit 
measurements or their derived parameters. Generally, the 
existing strategies may be divided into modulation [11],[12] 
and state observation [13]. However, due to the intrinsic 
nonlinearity and parameter uncertainty of BSRM, these 
strategies are difficult to get a satisfying solution.  

Recently, artificial intelligence techniques have app-
eared in the literature for motion control [14-16]. artificial 
neural network (ANN), as a kind of intelligent control 
method, can get rid of the dependence of control object and 
obtain a batter treatable and robustness in dealing with the 
problem of nonlinear and uncertainty. In [15], [16], ANN is 
used in switched reluctance motor (SRM) closed-loop 
system as a position and speed estimator. However, when 
ANN is used, some drawbacks can be mentioned: 1) a 
great amount of training samples in training, 2) the selection 
of network topology and the determination of initial weighted 
value is mainly according to experience, 3) problems of 
local minimum and over-fitting. These shortcomings are al-
ways the difficult problems of ANN in application. Compared 
to ANN, support vector machines (SVM), as a new machine 
learning method proposed by V. Vapnik [17], has been 

widely used in nonlinear modeling and control areas in 
recent years. The training process of SVM follows structural 
risk minimization principle and small sample study has 
strong generalization ability. Its structure and parameters 
are formed automatically in the training process by the 
samples. And least squares support vector machine (LS-
SVM), proposed by J. A. K. Snykens [18] , defines a cost 
function which is different from classical SVM and changes 
its inequation restriction to equation restriction, which 
greatly accelerates the solution speed and there is no local 
minimum question. Therefore the LS-SVM can successfully 
overcome the defects of ANN, and have batter performance 
and wider application. In [19], an approach of rotor position 
estimation for SRM based on SVM is presented. In [20], 
[21], LS-SVM is used to estimate the rotor displacement for 
magnetic bearings and to identify the inverse model for 
BSRM decoupling control.  

This paper presents a rotor displacement self-sensing 
approach for a 3-phase 12/8 pole BSRM. The basic 
premise of the method is that two different LS-SVMs are 
trained off-line to form two very efficient mapping structures 
for α-and -direction displacement system of BSRM 
respectively. Through the measurement of currents {i | i = 
(isa1, isa2, ima)} and rotor position ( ), two LS-SVMs are able 
to estimate the rotor displacements {D | D=(α, )}, thereby 
facilitating elimination of the rotor displacement sensors. 
 
Modeling of 3-phase 12/8-pole BSRM 

Fig.1(a) shows the windings configuration of a 3-phase 
12/8-pole BSRM. There are 4-pole motor windings and 2-
pole suspension windings in one stator. The 4-pole motor 
windings are placed outside in the stator slots. The inside 
conductors are for the 2-pole radial suspension force 
windings. Fig.1(b) shows the principle of radial force 
production, only A-phase windings are shown. ma is the 4-
pole fluxes produced by the 4-pole motor windings current 
ima. If the rotor is placed at the center of the motor, the flux 
densities at the poles are equal to each other. At this time, if 
the 2-pole flux sa1 is generated by the 2-pole suspension 
windings Nsa1, the flux density increases at the air-gap1, and 
decreases at the air-gap2. The symmetrical 4-pole flux 
distribution is unbalanced, This unbalanced flux distribu-tion 
results in radial force Fα, which is exerted in the α-axis 
positive direction, as shown in Fig.1(b). A radial force in the 
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α axis negative direction can be produced with a negative 
current in Nsa1. Besides, a radial force F  in the  axis can 
be produced by the 2-pole suspension winding Nsa2. Thus, 
radial force can be produced in any desired direction. 
Similarly, this principle can be applied to the B- and C-
phases. And the radial force can be generated continuously 
by these three phases for every 15°. 
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       (a)  Windings configuration       (b) Principle of radial force production 
 
Fig.1. Windings configuration and principle of radial force 
 

The theoretical formulas of instantaneous radial forces 
of the A-phase can be developed from the inductance 
matrix based on the simple magnetic equivalent circuit. 
Under some general assumptions, such as neglecting the 
leakage flux and saturation effects, the mathematical model 
of the instantaneous radial forces Fα and F, consider the 
cross coupling between the α- and -direction radial forces, 
are derived from the derivatives of the stored magnetic 
energy W based on the inductance matrix with respect to 
the α- and -direction displacements α and , respectively, 

, .F W F W        The theoretical formulas of 

instantaneous radial forces of the A-phase are written in 
matrix form from[14]as 
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Where, ima, isa1 and isa2 are the instantaneous currents in A-
phase 4-pole motor main windings Nma and 2-pole radial 
force windings Nsa1 and Nsa2, respectively; 1( )k   and 2 ( )k   

are the function of the rotor angular position   and the 
dimensions of the test motor. When the configuration of test 
motor is fixed, 1( )k   and 2 ( )k   are only related to angular 

position . In this paper, the calculate formulas of 1( )k   and 

2 ( )k   is skipped. Interested readers are referred to [14] for 

detailed information. 
Furthermore, neglecting the external interfere forces, 

the motion equation of magnetic suspension rotor can be 
written as 

(2)                        ,F m F m mg      

Hence, the α- and -direction displacements α and  
can be obtained from (1) and (2) as the following form: 
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Note that α0 and 0 are equal to zero, since the rotor is 
almost time suspending at the center point of motor. So (3) 
can be then rewritten as 
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From the equ.4, we can see that the rotor displacements α 
and  are related to the currents {i | i = (isa1, isa2, ima)} and the 

position . So through the measurement of the currents {i | i 
= (isa1, isa2, ima)} and the position (), the rotor displacements 
{D|D=(α, )} can be estimated by equ.4. But due to the 
intrinsic nonlinearity and parameter uncertainty of BSRM, 
equ.4 cannot express the accurately relationship among i,  
and D when the BSRM operates in different state. Hence, to 
overcome the drawbacks of the analytical model equ.4, this 
paper takes advantage of LS-SVM with better solution for 
small-sample learning problem and good generalization 
ability to identify the relationship among i,  and D. 
 
Least squares support vector machine 

Consider a given set of training samples {xk, yk}k1,2,,N, 
where xk is the input vector and yk is the corresponding 
target value for sample k. With a LS-SVM, the relation 
underlying the data set is represented as a function of the 
following form: 

(5)                       Tˆ( ) ( ) .y x w x b   

Where  is a mapping of the vector x to some (probably 
high-dimensional) feature space, b is the bias and w is a 
weight vector of the same dimension as the feature space. 
For the LS-SVM regression, we introduce error variables for 
the fitting problem as follows: 

(6)                               T ( ) .k ke w x b y   

and for the given data we search for those weights that 
give the smallest summed quadratic error of the training 
samples in case of LS-SVM. Because this can easily lead to 
over-fitting, ridge regression (a form of regularization) is 
used to smoothen the approximation. The minimization of 
the error together with the regularization is given as 
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where γ is the regularization parameter.  

This problem can be solved using optimization theory. 
Instead of minimizing the primary objective (7), a dual 
objective, the so-called Lagrangian, can be formed of which 
the saddle point is the optimum. The Lagrangian for this 
problem is given as: 
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Where ak is called the Lagrangian multiplier. 
With Karush-Kuhn-Tucker conditions, the solution is 

given by the following set of linear equations： 
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Where  is the L-vector =[1,,L]T, y is the corresponding 
vector of yk-values y=[y1,,yL]T, 1 is the unity L-vector, and K 
is the L×L `Kernel matrix', The elements of matrix K equal 
Kij=(xi)

T(xj)=K(xi, xj), i, j=1,2,, L。K(xi, xj) is symmetric 
function which satisfies Mercer condition. Kernel function is 
often used result in an approximation by radial basis function 
(RBF), by polynomial functions, or by splines. In this paper 
we focus on the RBF kernel: 

(11) K(xi, xj)exp[|xixj|
2/(2

2)].

The solution of the set of equations (6) results in a vector 
of Lagrangian multipliers  and a bias b. The output of the 
approximator can be calculated for new input values of x, 
with  and b. The output is given as 
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Fig.2 The mapping structure of LS-SVMα 
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Fig.3 Data collecting and two LS-SVMs off-line training 
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Fig.4 LS-SVM-based displacements self-sensing 
 
LS-SVM-based displacement self-sensing for 3-phase 
12/8-pole BSRM 
 The basic premise of the proposed LS-SVM-based rotor 
displacement self-sensing method is that two different LS-
SVMs are trained off-line to form two very efficient mapping 
structures for α- and - direction displacement system of 
BSRM respectively. Through the measurement of currents 
{i | i = (isa1, isa2, ima)} and rotor position , two LS-SVMs are 
able to estimate the rotor displacements {D | D= (α, )}, 
thereby facilitating elimination of the rotor displacement 
sensors. Fig.2 shows the mapping structure of α-direction 
displacement model, LS-SVMα. the -direction displace-
ment mapping structure is similar to LS-SVMα, it is named 
LS- SVM. LS-SVMs training data is comprised of currents 

iand position  serve as inputs and displacement D as 
output. Given a representatively training data set, two 
different LS-SVMs can identify the correlation among  i,  
and D. Then the two trained LS-SVM can be evaluated 
against a test data set which have different values. 
 Initially, the data obtained from FEA were used to train 
the two LS-SVMs. but the experimental implementation of 
LS-SVMs after training showed considerable error in the 
rotor displacements estimate. Sampling error and noise 
introduced during analogue-to-digital conversion processes 
in the experimental system result in erroneous estimation of 
the rotor displacements. As a result, the experimental data, 
which are representatives of physical phenomena, have to 
be constructed. Therefore, the experimental system is 
executed in the displace-ment sensored mode. The two LS-
SVMs that would be off-line trained by this experimentally 
captured data would negate the effects of noise, sampling, 
and estimation errors. Experimental data are collected in 
closed loop control system. A total of 2000data points is 
randomly selected from the captured magneti-zation 
characteristics and used for training. Fig.3 shows how 
experimental data was collected and how two LS-SVMs are 
trained off-line. 
 
Experimental results 

To verify the effectiveness of the proposed method, the 
displacement self-sensing for 3-Phase 12/8-Pole BSRM is 
conducted. The system block used in the experiment is 
shown in Fig.4. The parameters of prototype are listed in 
Tab.1. And the experimental results are presented here. 

 
Tab.1 Parameters of prototype 

parameters value parameters value 

Nma/[turns] 60 m/[kg] 1 

Nsa/[turns] 24 h/[m] 0.1 

lg/[m] 310−4 J/[kgm2] 910−3 

l0 /[m] 2.510−4 Nrir/[H/A] 410-7 
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Fig.5 LS-SVM  Generalization performance 
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Shown in Figure 5 is the test error of LS-SVMα at 200 
test data points that are not part of the training set in 
experimentally captured data. This is done to analyze the 
generalization capability of LS-SVM, From the error carve 
we can see that the test error is small, and the max value is 
0.1μm, it is much less than the average air gap 0.3mm. So 
the LS-SVMα has a strong generalization performance. 

Figure 6 shows the comparison of the estimated rotor 
displacement ̂  and the eddy-current sensor output α. The 
reference of the rotor displacement is intentionally changed 
with a shock wave. It is seen that the estimated rotor 
displacement includes a certain level of noises. However, a 
good correspondence is seen with the proxy sensor. 
Therefore, it is shown that the proposed self-sensing 
method of the rotor displacement is quite effective. 
 
Conclusions 

The work presented in this paper describes a LS-SVM-
based displacement self-sensing method for a BSRM. The 
approach is to train two LS-SVMs to estimate rotor 
displacement for given phase current and rotor position. 
Two effective mapping structures were obtained through 
two LS-SVMs off-line training by the experimental data. The 
simulation and experimental results verify the effectiveness 
of the proposed method.  
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