A compact cap-free headphone driver

Abstract. This paper proposes a compact structure to generate high rejection power supplies for proposed class AB amplifier (abamp). A NMOS-based low drop out regulator that does not require external compensation is utilized to provide a positive power supply. A regulated negative charge pump is utilized to provide a negative power supply. Chopper technology is utilized in the abamp to lower noise and offset. The driver could provide high power supply rejection (88dB at 217 Hz), high fidelity (74 dB total harmonic plus noise), low noise (7 µV) and low offset (1 mV) audio signals.

Streszczenie. W artykule zaproponowano kompaktową strukturę zasilacza ze sterownikiem o wysokiej skuteczności eliminacji szumów. W zasilaczu zastosowano tranzystor typu NMOS i sterowaną przetwornicę napięcia oraz chopper w celu redukcji szumów oraz offset-u. (Kompaktowy, bezkondensatorowy sterownik słuchawk).

Keywords: Headphone driver, NMOS LDO, negative charge pump, chopper

Introduction

Recent years have witnessed a growing market demand for audio amplifiers in multimedia equipment such as computers, mobile phones and other wireless equipments. The design of audio drivers in such environments must meet several challenging requirements: high audio fidelity, low noise (including electromagnetic interference, EMI), and strong immunity to noise (such as RF noise) [1]. High audio fidelity is required to support music playback at near-CD quality. Low noise and strong immunity is required to lower the interference to or from other devices.

Generally, two classes of power amplifiers are utilized for this application: Class D amplifier and Class AB amplifier (abamp). Class D amplifier provides the advantage of power efficiency at the cost of slightly reduced performance (especially noise and distortion) and a level of switching noise. It might, in some cases, interfere with RF functions such as the signal reception of mobile phone, GPS or FM radio. Owing to above reasons, an abamp that has the advantage of higher audio fidelity and no switching noise generation is preferred for headphone applications [2].

Normally, external high pass filters are used to cut-off the common mode voltage at the output of amps. Such filters, made of external capacitors of a few hundred of micro farads, are huge and expensive [3]. To avoid the use of output common-mode filter, a negative charge pump (NCP) is utilized to generate a negative power supply, so as to develop a cap-free abamp that is supplied by a symmetrical (positive/negative) voltage and has a ground common mode, as shown in Fig. 1. Due to the utilization of negative power supply, this type (cap-free) of headphone driver has a worse noise performance and power supply rejection (PSR) ability which is one of the most important characteristics for an audio amplifier, especially in mobile phone [4], That makes an headphone driver has a weak immunity to interference within the audio band. For example, the 217 Hz transmit bursts in GSM phones may modulate the battery voltage and affect the audio performance if the driver has limited PSR.

Power supply noise could be suppressed by improving power supply rejection ratio (PSRR) of the abamp. Cascaded multi-stage configurations are mostly utilized to boost PSRR of abamp [5]. These architectures would difficult the compensation technology of abamp since they would boost the gain at same time [6]. A worse case is that the PSRR decreases quickly as frequency increases, and even no PSRR improvement because of device mismatch. Commonly used method to improve PSRR of cap-free headphone driver is inserting a PMOS LDO after battery supply (V_{CC}) and another LDO after the NCP [7]. The PSRR of abamp is boosted by the high PSR power supplies provided by two LDOs. This method is very expensive since the PMOS LDO needs external compensations, which require additional cost on capacitances, pins, bonding wires, pads and die size.

![Fig. 1. A conventional cap-free headphone driver](image)

This paper proposes a compact structure to generate high PSR positive and negative power supplies for a proposed amp, so as to generate a high PSRR (88 dB at 217 Hz), high fidelity (74 dB total harmonic plus noise, THD+N), low noise (7 µV) and low offset (1 mV) output audio signal. The cost is decreased since no external compensation is required. Section II describes the architecture of proposed headphone driver. Section III describes a NMOS based LDO for generating a positive power supply and a regulated negative charge pump for generating a negative power supply. Section IV describes the circuitry of structure of an abamp. The experimental results are shown in Section V. Finally, conclusions are drawn in Section VI.

Architecture

The block diagram of the headphone driver is shown in Fig. 2. The headphone driver comprises a cap-free (NMOS based) LDO to generate a high PSR positive power supply, a negative charge pump to generate a high PSR negative power supply, and two abamps utilizing chopper technology to lower the noise and offset. Due to the high PSR power supplies, PSRR of output audio signal is boosted.

A. Cap-free LDO

LDO voltage regulator is especially suitable to attain a high PSR power supply since it is easy to design and has no switching action during operation. PMOS power transistors are the natural choice but the resulting LDO regulator presents several drawbacks. Exemplary, with respect to the use of NMOS, PMOS-based voltage regulators have lower maximum output current (for the same area) and require complex frequency compensation.
schemes with a large external capacitor for closed-loop stability. Recently, NMOS-based LDO regulators have been presented. To obtain the low drop-out feature, the power MOS gate of the NMOS-based LDO is raised above the supply voltage [8].

Fig. 3 illustrates a block diagram of proposed cap-free LDO shown in Fig. 2. It comprises of a voltage reference (VREF1), a low gain error amplifier (EA1), a current source I1, a power MOS (MN), and a 2× charge pump made up of capacitors CF and CS and switches S0–S3.

![Fig.2. Proposed headphone driver](image1)

![Fig.3. Block diagram of proposed cap-free LDO](image2)

Specifically, referring to the 2X charge pump, during phase 1, switches S2 and S3 are closed and the voltage across CF is charged to VCC. Conversely, during phase 2, S1 and S2 are closed, and the voltage on CF is added to VCC, so as to obtain a 2×VCC voltage level at the output end of the charge pump. CF and CS are in parallel during phase 2 and the charge is redistributed between the two capacitors. After reaching the steady state, the voltage 2×VCC is stored across capacitor CS and it serves as a voltage source.

The EA is supplied by the output voltage (VSP) of the LDO itself, instead of battery voltage VCC. It increases the PSRR of EA1 and further increases the PSRR of the capless LDO. For this reason, there is no need to consider the PSRR of EA1 when analysis the PSRR of presented LDO.

A feedback loop regulates VSP around a constant voltage decided by R1, R2 and VREF1. A high PSR power supply voltage obtained since VSP is substantially not affected by VCC. A capacitor CC is utilized to compensate the dominate pole on the gate of MN. The control loop is stable as long as the unity gain frequency (UGF) of the loop is smaller than the output pole. In a simplified calculation, the control loop has a phase margin of at least 60 degrees when the following condition is satisfied [9]:

\[2 \times \frac{R_1}{R_1 + R_2} \times \frac{G_{MI}}{G_{C}} < G_{MN} \]

where: \(A_I\) – gain of EA1, \(G_{MI}\) –transconductance of MN, \(G_{MN}\) –transconductance of MN.

B. Negative Charge Pump

Fig. 4 illustrates a block diagram of the regulated NCP shown in Fig. 2. It comprises an open loop charge pump made up of CR and CN and switches S5–S8, two voltage references (VREF2 and VREF3), a voltage divider and an operational error amplifier (EA2).

Specifically, referring to the charge pump, during phase 1, switches S8 and S7 are closed and the voltage across CR is charged to VCC. Conversely, during phase 2, S5 and S6 are closed, one terminal of the CR is coupled to ground through S5, and a negative VCC is obtain on the other terminal since the voltage between two terminals can not change immediately. CR and CN are in parallel and the charge is redistributed between the two capacitors. After reaching the steady state, the voltage -VCC is stored across capacitor CN that serves as a voltage source.

The output of NCP is easy to be affected by the VCC or load current when NCP runs in open loop. So, EA2 is utilized to control the on resistance/current of switch S2 to obtain a regulated output voltage that is give as

\[V_{SN} = \frac{R_1 + R_2}{R_3} \times \frac{R_4 + V_{REF2}}{R_4} \]

When the negative voltage VSN increases, the output of EA2 also increases to reduce the on-state resistance of switch S2 or to increase the charge current. Thus the negative voltage VSN falls off. The negative voltage VSN is regulated by the feedback loop and is independent from the input voltage VCC. And nearly no change may occur on the negative voltage VSN when the input voltage VCC is changed. Therefore, high PSR negative power supply is obtained.

C. Class AB amplifier

Fig. 5 illustrates a block diagram of the amp shown in Fig. 2. The amp comprise an input stage utilizing chopper technology to lower noise and offset, an output stage to drive the headphones and to filter high frequency noise.

A conventional CMOS amplifier has a typical input-referred noise spectrum. At relative low frequency range, the noise power is increasing almost linearly with decreasing frequency and is therefore commonly called 1/f noise. For rather high frequency range, the noise can be considered as frequency independent or white. This is usually called the thermal noise floor. The frequency at which the 1/f noise becomes dominant over the white noise is called the noise corner frequency fc. Although offset is usually modelled as a time-invariant voltage source, it may change as aging or temperature variations. This implies that it has a certain bandwidth and can therefore be considered as a very low-frequency noise source [10].
The principle of the chopper technique is shown as follows. The chopper modulator modulates the differential input signals from audio frequency bands (20-20K Hz) to a higher chopping frequency (10× larger than 20K), and the chopping frequency is determined by the biphasic non-overlapping control signals Φ_1 and Φ_2. The amplifier amplifies both the modulated differential input signals (I_{NP} and I_{NN}) and its combined input-referred noise and offset (V_{IN+VO}). The chopper demodulator subsequently demodulates the amplified input signal back to its original low frequency but modulates the amplified noise and offset to the chopping frequency. So, the respective frequencies of the amplified input signal and the amplified V_{IN+VO} are effectively separated. Finally, the low-pass filter recovers the amplified input signal and attenuates the noise and offset [11].

III. Realization of power supplies

To test and prove this theory, power supplies employing the proposed cap free LDO and NCP is designed to supply two abamps.

A. Realization of cap-free LDO

Fig. 6 illustrates a schematic circuitry of the cap-less LDO shown in Fig. 2 and Fig. 3. Switches S_1, S_3, and S_4 of the charge pump are implemented with PMOS transistors M_{11}, M_{13}, and M_{14} respectively while S_2 is implemented with NMOS transistors M_{12}. A pair of converse clock f_1 and f_2 is used to turn on/of above transistors. An enough dead time should be reserved to prevent punching through. Bulk of M_{13} is connected to one terminal of C_R instead of V_{CC}, and buck of M_{14} is connected to $2\times V_{CC}$. A Zener diode with 7.5 V breaking down voltage is connected to $2\times V_{CC}$ to protect devices from being damaged. For example, $2\times V_{CC}$ is clamped around 7.5 V instead of rising to 10 V even V_{CC} is up to 5V.

M_1, M_2, M_3 are matched NMOS, the same as M_4, M_5, M_6. M_7 is matched with M_8, same as M_{15} and M_{16}. M_{10} is 2 times of M_9. So, M_1 and M_{16} have same current I_B during steady state. M_1 pushes up voltage on gate of M_N when V_{SP} is lower than a predetermined level; conversely, M_1 pulls down voltage on gate of M_N when V_{SP} is higher than the predetermined level.

According to (1), the lowest phase margin occurs at the situation of minimum load current. It is always possible to make G_{MN} larger than G_{M1} since tail current of the EA1 is part of the current through M_N. It makes the system stable for all load currents including the worst case no load situation.

B. Realization of the regulated NCP

Fig. 7A illustrates a schematic circuitry of regulated NCP shown in Fig. 2 and Fig. 4. The NCP comprise a PMOS transistor E_1 to implement switch S_8, three NMOS transistors E_2-E_4 to implement switches S_5-S_7, an inverter comprising E_5 and E_6, an error amplifier EA2 to amplify the difference between V_{REF2} and a feedback voltage (FB), and a buffer to enhance load ability of the amplifier EA2. The schematic circuitry of amplifier EA2 and the buffer are shown in Fig. 7B and Fig. 7C.

Normally, V_{REF2} equals to ground voltage level. So, PMOS input transistors are utilized in EA2. EA2 also utilizes folded-cascode architecture to get better PSR performance.
The detail introduction is abbreviated hereby since it is a commonly used architecture.

The buffer also utilizes a common used two stage amplifier with miller compensation. The output stage utilizes PMOS transistor to provide enough load ability.

The gate of transistors E1, E2, E3 and E4 are controlled by control signals Q1, Q2, Q3 and Q4 that are shown in Fig. 8A. At the first period T1, control signals Q1 and Q2 are at low level while Q3 and Q4 are at high level. As a result, transistors M1 and M2 turn on while E2 and E3 turn off. The power supply voltage VCC charges the capacitor CR. At the second period T2, control signals Q1 and Q3 are at high level while Q2 and Q4 are at low level. So transistor E1 and E4 turn off while E2 turn on. E3 is regulated by the output signal of the amplifier EA2. During this period, E3 is configured to be a voltage-controlled current source or a voltage-controlled resistor. Thus, the capacitor CN charges capacitor Cn at period T2 when the charging current is controlled by the regulating signal E2 from the error amplifier EA2. So a regulated VSN is obtained.

IV. Realization of the amp

Fig. 9A shows a schematic circuitry of the amp shown in Fig. 2 and Fig.5. The amp has two stages: a folded cascode input stage configured to provide a voltage gain, and a class-AB output stage configured to provide the headphone driving capability. The specific circuit of the bias circuit of the amp shown in Fig. 8A is shown in Fig. 8B.

A. Input stage

Due to the strong noise immunity ability, differential input signals gain more and more popular. For an application with differential input signal, input voltage would runs widely, even near the power supply rail. As the input voltage is rail to rail, we need an input stage that can operate under voltage from VSN to VSP.

The choppper modulator CM1 is located after input signal while CM2 and CM3 are located after input transistors. Selection the size of the chopper modulator switches should consider the compromise between charge injection and thermal noise. A larger size reduces thermal noise while increases charge injection conversely. Herein, minimum size is adopted since they have little effective to total noise and offset. The chopping frequency needs to be optimized to obtain a good compromise between noises and offset. The specific trade-off is that while a higher chopping frequency reduces noise (particularly flicker noise), it conversely increases the offset that is induced by charge injection and clock-feed through at the chopper modulator. Herein, 250K is adopted.

B. Output stage

To make sure the stability of the amp, the output utilizes miller capacitance CC1, CC2 and resistor Rz configured to compensate the loop. The output stage also works as a low pass filter for reducing the modulated offset and noise from the input stage.

The output stage of the abamp incorporates a minimum current selector (N6, N8, N12, P12) in a feedback loop [12]. The bias current of the output transistors is determined by the current mirror ratio between the minimum current selector and the output transistors.

Specifically, P5, P6, P23 and P24 are matched device. Assuming they are working in saturation region, they share the same reference current IREF if the gate voltage of P5 and P6 are equal to V1. The current summing branch (N6, N8, N7, P4, P6, P7) forms an amplifier, which regulates the quiescent current of the abamp output stage (N13, P13) together with the minimum current selector. Thus, the output current of the minimum current selector flowing through P12 is regulated to be equal to the reference current IREF by this amplifier. N8 and N6 are matched to N12, but are biased in such a way that they serve as a composite transistor with half the effective aspect ratio of P14 in a quiescent state. Hence, the quiescent current of the output transistors (P13, N13) is equal to

\[
I_Q = 2 \times I_{REF} \times \frac{W_{P13} \times L_{P12}}{W_{P12} \times L_{P13}}
\]

When P13 sources a large output current from the load, a large current flowing through P12 and N12 pulls the voltage level on the source of N6 down to the VSN. N6 and N13 now operate as a current mirror, and the current on N13 is scaled down from the current on N6 according to the mirror ratio between N13 and N6. This means that the minimum standby current flowing through the output transistor (N13) is half of the quiescent current. On the other hand, when the output transistor (N13) sinks a large current output to the load, the drain-to-source voltage of N6 will be sufficiently high, so that N6 enters into the saturation region. Then, N6 and N12 form a current mirror, and the drain current of P6 and P7 are equal to that of P12. This sets the minimum standby current of the output transistor (P13) to be also half the output stage quiescent current.

N5, N15, P10, and P11 are provided to reduce the channel length modulation effect of P12 and N6.

V. Measurement results

The driver prototype was fabricated in HHNEC 1.2um BCD technology. The die photograph marked with essential circuit components is shown in Fig. 9. The total layout area occupied 2.25 mm² (1500 µm x 1500 µm).

Fig. 10 shows a test result of the THD+N as a function of output power. The Vcc is 5V, input signal is set at 1kHz, and the load is 32Ω. For small output amplitude cases, THD+N are limited by the noise and hence decreases as the output power increases. The max power for each channel with 32Ω load is about 100mW.
VI. Conclusion

A NMOS-based LDO regulator that does not require external compensation and a regulated negative charge pump are utilized to generated a symmetrical supplies for headphone driver. Chopper technology is utilized to lower the noise and offset of abamp. Test result show that the driver could provide a high power supply rejection ration (88 dB at 217 Hz), high fidelity (74 dB total harmonic plus noise), low noise (7μV) and low offset (1mV) output audio signal with low quiet current consummation (2mA per channel).

REFERENCES

[12] Kyehyung Lee, Qingdong Meng, Sugimoto T., A 0.8 V, 2.6 mW, 88 dB dual-channel audio delta-sigma D/A converter with headphone driver, IEEE Journal of Solid-State Circuits, 44(2009), No.3, 916 - 927

Authors: Haishi WANG, University of Electronic Science and Technology of China, Chengdu, 610054, China, e-mail: whswdy110@163.com)