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Contact Problem of Disk on Shaft Fixed by Induction Shrink Fit 
 
 

Abstract. The problem of shrink fit between the disk and shaft is solved. The shrink fit realized by induction heating must transfer the prescribed 
torque and power. Both disk and shaft are considered elastic. The first step of the task is to find appropriate dimensions of the disk and interference. 
The second step is to suggest the parameters of its induction heating. The methodology is illustrated by a typical example.  

Streszczenie. W artykule rozwiązano problem pasowania kurczowego  między tarczą a wałem. Pasowanie kurczowe zrealizowane zostało metodą 
indukcyjną – musi ono przenieść założone moment i moc. Zarówno tarcza jak i wał zostały potraktowane jako elastyczne. Pierwszym krokiem w 
rozwiązaniu zadania jest znalezienie dogodnych rozmiarów tarczy. Drugim krokiem jest zasugerowanie parametrów jej nagrzewania indukcyjnego. 
Ta metodyka została zilustrowana typowym przykładem. (Problem kontaktu tarczy na wale poprzez zastosowania pasowania kurczowego)  
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Introduction 

The paper deals with the contact problem of the disk on 
a shaft fixed by the induction shrink fit. Shrink fits represent 
firm connections of two metal parts and their principal task 
is to transfer prescribed mechanical forces or torques. They 
are widely used in numerous industrial and transport tech-
nologies (shrunk-on rings, crankshafts, tires of railway 
wheels, armature bandages in rotating electrical machines 
and so on, see, for instance [1]). Their realization is based 
on heating of the external part of the system, which leads to 
an enlargement of its dimensions (i.e., the radius of the 
internal bore of a wheel). The second part (i.e., a shaft 
whose radius at the room temperature is somewhat greater 
than the radius of the bore) is then inserted into it and the 
whole system is cooled. After cooling we obtain a firm joint 
characterized by a high pressure between both connected 
parts. The shaft is also considered elastic. 

The process of heating is mostly realized by gas or in-
duction. Induction heating is characterized by an easy con-
trol of the intensity of heating and its local distribution, no 
chemical changes in the surface layers of the heated mate-
rial, and no products of combustion. For the above reasons, 
this way is preferred in all cases where it is possible.   

 
Formulation of the technical problem 

The shaft of external radius A2r  is manufactured with an 

interference ABr  with respect to the internal radius B1r  of 

the disk (see Fig. 1). The external radial force 0rf  existing 

at the place of the contact at rest allows transferring  

 mechanical torque 2
C 0 f2 rM r h f f , where h  de-

notes the width of the disk, Cr  denotes the final com-

mon radius of the shaft and disk (see Fig. 1),  and ff  

is the coefficient of dry friction steel – steel 
 and (provided the system rotates) power P M , 

where   stands for the angular velocity of rotation. 

 

Fig. 1. Schematic view of manufacturing a shrink fit 

Pressing of the disk on the shaft is considered thermoe-
lastic. In other words, the disk is inductively heated as long 
as its internal radius B1r  dilates thermoelastically by a value 

B1, ABTr r   , then it is pushed on the shaft and cooled to 

its initial temperature.  
The aim of the paper is to present a complete numerical 

algorithm for solution of such a contact problem respecting 
the deformations of both disk and shaft. The solution is 
carried out in three following steps: 
 First, starting from the torque M  that is to be 
transferred and dimensions B1r , B2r  and h  of the disk it is 

necessary to find a sufficient interference ABr . This is, 

however, a very complicated inverse problem. The easiest 
way is, therefore, to find the dependence  

 max max ABM M r   ( maxM  being the maximum trans-

ferable torque for the given interference ABr  at rest, which 

is the most unfavorable case) and then to estimate the 
value ABr  from this curve. 

 Second, we have to check the mechanical stress 
of the disk after its pressing on the shaft. This starts from 
knowledge of the external radial force 0rf  at rest. This 

value then serves for computing the reduced stress red  

(for example, red,Mi  by the von Mises hypothesis) and its 

comparison with the yield stress of the steel used. For 
growing revolutions, the effect of the centrifugal forces (act-
ing mainly in the disk) leads to changes of the reduced 
stress that has to be checked as well.  
 Third, we have to map the process of induction 
heating of the disk. Its purpose is to find the parameters of 
the field current in the inductors (amplitude and frequency) 
that would secure that the required dilatation of the internal 
bore of the disk reaches a value B1, ABTr r    in a reason-

able time and still acceptable temperature.  
 

Continuous mathematical model 
The mathematical model of the problem consists of two 

independent submodels. The first of them is purely mechan-
ical and serves for finding the radial stresses in the disk and 
shaft after pressing, corresponding value of the maximum 
transferable torque and von Mises stress. Provided that 
these values are acceptable, we apply the second submod-
el for the description of induction heating. This task repre-
sents a nonlinear triply coupled problem characterized by 
the interaction of magnetic field, temperature field and field 
of thermoelastic displacements. The physical properties of 
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material, moreover, depend on the temperature. 
The first mechanical submodel is described by the iso-

thermic Lamé equation in the form [2]  
 

(1)         Lgrad div ,        0u u f  

            
    

,
1 1 2 2 1

E E 
  


 

   
,         

 
where E  denotes the modulus of elasticity,   is the Pois-

son coefficient of the contraction, symbol  , ,r zu u uu  

represents the vector of the displacement, and Lf  stands 

for the vector of the volumetric (for example gravitational) 
forces. But in comparison with the thermoelastic strains and 
stresses they are very small and may be neglected. The 
boundary conditions follow from Fig. 2. 

 

Fig. 2. Boundary conditions ( ,r zf f  denoting external radial and 

axial forces) 
       Shaft: I-II  – 0, 0z ru f  ,       II-III  – 0, 0r r zf f f   , 

         III-IV  – 0, 0r zf f  ,   IV-I  – 0, 0r zu f  . 

 Disk: I-II  – 0, 0z ru f  ,       II-III  – 0, 0r zf f  , 

        III-IV  – 0, 0r zf f  ,   IV-I  – 0, 0r zf f f  . 

 

Unfortunately, the value of force 0rf  (see Fig. 1) is not 

known beforehand. The task must be, therefore, solved 
iteratively in the following way: 
o Choice of external radial stress 0rf , 

o Solution of (1) for both disk and shaft in order to obtain 
the values of displacements A2r  and B1r ( Fig. 1), 

o Calculation of A2 B1 ABr r r       , 

o If 0  , where 0  is a prescribed tolerance, the 

computations stop, otherwise the value of external ra-
dial stress 0rf  must be changed appropriately. 

After finishing this iterative process, we can easily find 
the maximum transferable torque at rest and also the von 
Mises stress. 

The second submodel describing the process of induc-
tion heating (see Fig. 3) consists of three second-order 
partial differential equations describing the distribution of 
the three above mentioned fields. 

 

Fig. 3. Induction heating of the disk 

Magnetic field in the system is described by the solution 
of a well-known parabolic equation for magnetic vector 
potential A  in the form [3] 

 

(2)                   ext
1

curl curl 


  
    

A
A J

t
,    

 
where   denotes the magnetic permeability,   is the elec-

tric conductivity and extJ  stands for the vector of the exter-

nal harmonic current density in the field coils. 
But solution to (2) is, in this case, practically unfeasible. 

The reason consists in the deep disproportion between the 
frequency f (tens or hundreds Hz) of the field current extI  

and time of heating Ht  (minutes). That is why the model 

was somewhat simplified using the assumption that the 
magnetic field is harmonic. In such a case it can be de-
scribed by the Helmholtz equation for the phasor A  of the 

magnetic vector potential A  [3] 
 

(3)            extcurlcurl j    A A J ,      

where   is the angular frequency. But the magnetic per-
meability of ferromagnetic parts needs not be a constant; it 
can always be assigned to the local value of magnetic flux 
density. It computation is, in such a case, based on an 
iterative procedure. 

The conditions along the axes of the system and artifi-
cial boundary placed at a sufficient distance from it are of 
the Dirichlet type (  0A ).  

The temperature field is described by the heat transfer 
equation [4] 

(4)                  pdiv grad
T

T c p
t

  
   


,       

where   is the thermal conductivity,   denotes the mass 

density and c  is the specific heat (all of these parameters 
are temperature-dependent functions). Finally, symbol p  

denotes the time average internal volume sources of heat 
that generally consist of the volume Joule losses Jp  due to 

eddy currents and magnetization losses mp . So 
 

(5)                                    J mp p p  ,                              
 

where 

(6)                

2

eddy
J eddy, jp 


  

J
J A ,   

while mp  (if they are considered) are determined from the 

known measured loss dependence  m mp p B  for the 

used material (magnetic flux density B  in every element is 
in this model also harmonic). 

The boundary conditions take into account convection 
and radiation. 

 The solution of the thermoelastic problem is solved by 
means of the Lamé nonisothermic equations that read [2] 

 

(7)                
   
  T

grad div

3 2 grad ,T

  

  

    

      0

u u

f
    

where T  is the coefficient of the linear thermal dilatability 

of material and T  denotes the temperature. Other parame-
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ters are identical with those in (1). The boundary conditions 
correspond to the free disk. 
 
Numerical solution 

The numerical solution of the task was realized by 
codes QuickField (mechanical submodel) and COMSOL 
Multiphysics (induction heating submodel) supplemented 
with a number of own scripts and procedures. Attention was 
particularly paid to the convergence of results in the de-
pendence on the density of discretization mesh and dis-
tance of the artificial boundary (in case of magnetic field). 
The results were required to reach 2–3 valid digits. The 
computation of one example takes (on a good PC) several 
hours. 
 
Illustrative example 

The nominal radii of the shaft and internal bore of the 
disk A2 B1 0.1r r  m, B2 0.5r  mm, 0.05h  m. The 

interference ABr  is tested within the range 0 0.3 mm. 

Some physical parameters of disk material – steel 15300 –  
( p T, , , ,c     ) are temperature-dependent functions, 

other parameters are constant ( 112.1 10E   N/m2, 

0.3  ). Its yield stress 8
k 4.226 10   N/m2 and the 

coefficient of friction f 0.55f  . 

Figure 4 shows the dependences of the von Mises 
stress in the shaft and disk as functions of interference 

ABr . The highest allowable interference for the disk (for 

which still red,Mi k  ) is 0.22 mm.  This value also pro-

vides the maximum allowable torque (at rest) 
5

0,max 4.182 10M   Nm, see Fig. 5. 
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Fig. 4. Von Mises stress red,Mi  as a function of ABr at rest: 

I – shaft (here red,Mi r0f  ), II – disk 
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Fig. 5. Transferable torque 0M (at rest) of the shrink fit as a func-

tion of ABr  

 
 
 
 

 Fig. 6 shows the arrangement of the inductors, for which 
Fig. 7 shows the time evolution of the average temperature 
of the disk for various values of field current whose fre-
quency is 50 Hz. Similarly, Fig. 8 shows the displacements 
of the internal radius of the disk, from which we can deter-
mine the time of heating for the chosen value of ABr . 

 
Fig. 6. Arrangement of the inductors around the disk   
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Fig. 7. Time evolution of average temperature of the disk   
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Fig. 8. Time evolution of radial displacement of the bore 
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