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Analysis of the electromagnetic field generated by electric 
charges moving with variable acceleration and general Lorentz 

transformations 
 
 

Abstract: The problem of determining electromagnetic fields generated by electric charges travelling with a variable acceleration are considered in 
the paper. By applying Liénarda-Wiechert’s formulas the resulting fields have been explicitly defined by a charge in a linear motion exerted by a 
constant force, i.e. within the relativistic approach, and a distant field generated by a charge in a harmonic motion. On such basis the space-time 
coordinates relationships between inertial and non-inertial reference frames have been derived, which provide a certain generalization to Lorentz 
transformations. 
 
Streszczenie: W pracy zaprezentowane jest zagadnienie obliczania rozkładów pól elektromagnetycznych generowanych przez ładunki poruszające 
się ze zmiennym przyśpieszeniem w oparciu o wzory Liénarda-Wiecherta. Na tej podstawie wyprowadzono relatywistyczne transformacje pomiędzy 
współrzędnymi czasoprzestrzennymi przy przechodzeniu od układu inercjalnego do nieinercjalnego na przypadki ruchu z  przyśpieszeniem pod 
wpływem stałej siły oraz ruchu drgającego. (Analiza pola elektromagnetycznego w otoczeniu ładunków poruszających się ze zmiennym 
przyśpieszeniem).  
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Introduction  
 An intense search aimed at providing a mathematical 
formulation for the electrodynamics laws in non-inertial 
reference frames has driven us to complete this paper. 
A concept which served it is basically finding a distribution 
for the electromagnetic field generated by sources in 
accelerated motion. Liénard–Wiechert retarded potentials 
[1, 2] seem perfect to perform this task. If field functions can 
be put in an explicit form, which is correct only for particular 
cases of moving sources, then transformation relationships 
can be found, for both space-time coordinates and field 
components in both types of the considered reference 
frames, i.e. inertial and non-inertial ones, which provides 
general Lorentz transformations. The relations obtained that 
way shall allow certain differential operators to be used to 
derive electrodynamics equations in the considered non-
inertial reference frame. 
The paper deals with fields generated by a point electric 
charge in a linear motion 

a) exerted by a constant force as in the relativistic 
approach,  

b) in a harmonic motion.  
For a) case both electromagnetic field and transformations 
of space-time coordinates, including the classical limit have 
been fully provided, whereas for b) case electromagnetic 
field for the distant zone has been found.  
 
General description of the field generated by a point 
charge in a linear accelerated motion  
 An electromagnetic field at position r and at time t 
generated by a point electrical charge Q travelling along 
arbitrary trajectory (Fig. 1) can be determined with 
Liénard-Wiechert forms for retarded potentials V, A [1, 2], 
namely 
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where:  0rrR  , cRt  , v() – velocity of the 

charge, c – the speed of light. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. A graphic illustration to Liénard–Wiechert forms 
 
Knowing that  
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the electromagnetic field vectors can be determined as: 
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where: c* vR  RR , 21   , cv   
 

The case under our consideration is a charged particle 
in a linear motion, here along the OX axis (Fig. 2), thus 
position, velocity and acceleration vectors take their 
respective forms of: 
 

(3)        0,0,0,0,,0,0),(00  avx  avr            
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Fig.2. The setup for the considered case 

Moreover, 
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and hence  
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Taking (2) and (3) transformed into a radial cylindrical 

coordinate  22 zy   (see Fig. 2) we obtain  
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To have these components expressed as a function of 
“observation” time t a relation between   time and t needs 
to be found from equation (5). In general the equation is 
solved numerically, and in its explicit form only for specific 
relations x0(). Two of such cases are to be developed 
further in the paper. 
 
Description of the field generated by a charge in a 
linear accelerated motion exerted by a constant force  
 Shall the point charge be assumed to be moving under 
constant force 00maF   with an initial velocity v(0)=0, then 

by solving the relativistic motion equations we obtain 
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For such a case the solution to equation (5) takes the form 
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Formula (8) provides the relationship between  and x,  
as well as t. By substituting (8) into (7) and further to (6) an 
explicit form of the field distribution is obtained, though the 
form derived is quite complex. Exemplary distributions 
obtained this way are presented in Figures 3, 4, 5. 

 
Fig. 3 Components of electric field strength E

 
Fig. 4 Component of electric field strength Ex  

 

 
Fig. 5 Component of magnetic field strength H
 
Description of the field generated by a charge in an 
oscillating motion  
For such a case the movement of the charge is expressed 
as: 
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Equation (5) takes the following form  
 

(9)           2   tRx   c)sin 2
0  

Though the exact solution can be obtained only numerically, 
still within the distant zone (R>>R0) 

222 zyxrR  and thus   
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The field components are expressed by 
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Transformation of the space-time coordinates  
Taking the solution presented in p.3 transformation 

relationships between O X Y Z inertial reference frame, 
which is the one where we define the charge movement, 
and O’X’Y’Z’, a non-inertial one set at the charge travelling 
due to constant force (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Reference frames under consideration
 

For  = 0  the Ex component from eq. (6) takes the form of  
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thus it is a Coulomb field. If observed that similarly to 
transformation between two inertial reference frames, the 
field component parallel to the velocity is not transformed, it 
shall be taken 
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Moreover, with an axiomatic assumption that O point 

moves with reference to O’ with –v velocity, an inverse 
relationship can be derived  
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as well as: 
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Theoretically equations (13) and (14) can be solved for t 
and t’ which provides the following pairs of operations for 
space-time coordinates 
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The explicit forms for the operations are presented for two 
cases, namely for a = a0 = const (classical boundary case 
i.e. for v << c), and for a determined in eq. (7). Complex 
operations result in 
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Since   0, hence: 
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while for  (7): 
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Comments 
For the presented approach to prove proper and correct two 
postulates need to be met, namely 
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a) the electric field component parallel to the velocity 
vector in the reference frame of the travelling charge is of a  
Coulomb like field, and  
b) v() = -v(’), 
Considering common Lorentz transformation the postulates 
set above seem natural, nevertheless it might be worthwhile 
to present another three arguments proving the derived 
formulas to be correct. 
a) for v = const leads to the classic Lorentz 
transformation for inertial reference frames, 
b) for v << c in case with c it yields Galileo 
transformations  
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 BvEBEE         '  
 
c) widely accepted in the literature “the clock postulate” 
(see p. [3] or else) is also satisfied here, e.i. the derived 
transformation forms provide for space-time coordinates to 
depend on the velocity of the systems, but not on the 
acceleration. 
 
 
 
 

Conclusions 
Lienard-Wiechert retarded potentials can be applied to 

obtain an explicit description of the electromagnetic field 
originating from a point electrical charge moving with a 
variable acceleration exerted by a constant force. 

For the charge in a harmonic motion, the explicit form 
for the electromagnetic field description in the distant zone 
can be derived. 

Resulting field distributions allow to provide general 
Lorentz transformations for the space-time coordinates in 
the inertial and non-inertial reference frames. 
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