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Abstract. Multi-band imaging computer-based system, self-designed and self-constructed, based on a liquid-crystal filter with spectral transmittance 
driven in  400 nm - 740 nm wavelengths range is presented. Performed tests of images dimensionality reduction, which base on different types of 
principal component analysis, indicated onto flexibility and usefulness of the described approach for skin cancer diagnosis. 
 
Streszczenie. W artykule opisano samodzielnie zaprojektowany i wykonany, wspomagany komputerowo, oparty na transmisyjnym filtrze 
ciekłokrystalicznym pracującym w zakresie długości fal od 400 nm do 740 nm, układ do obrazowania wielospektralnego. Przeprowadzone testy 
redukcji wymiarowości obrazu, w oparciu o różne rodzaje analizy jego składowych głównych, wskazały na użyteczność zastosowanego podejścia w 
diagnostyce raka skóry. (Komputerowy system wielospektralnej analizy danych obrazowych raka skóry). 
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Introduction 

Both in science and industry, different imaging 
procedures try to enhance or even correct human-eye red-
green-blue (RGB) principal-components sensing-
capabilities by the use of multi-photon microscopy[1 ], night-
vision magnifiers [2] and/or imaging spectrometers [3]. One 
of the most important areas within this range of activity, is 
dedicated to multispectral imaging in a chosen spectral 
range, for example, in X-ray analysis [4], or in Fourier-
Transform Infra-Red (FT-IR) spectroscopy. [5] 

Within the visible range (VIS), multispectral imaging 
employs setups with mechanically selectable spectral 
windows [6], or electrically driven liquid-crystals (LCD) filters 
[7], and/or uses acousto-optic filtering [8,9]. VIS imaging 
applies different widths and combinations of spectral 
windows followed by computer-based image processing, 
which can be compatible with officially approved imaging 
standards. For example, in the VIS range, the Narrow Band 
Imaging (NBI) [10] standard is applied. NBI uses two or 
three bands, realized by sequentially switched light sources 
and vision detectors. The most frequently met 2-bands 
solution works within the two spectral regions, where: the 
central wavelength equals 415 nm and the full width at half 
maximum (FWHM) equals to 30 nm (a), and the central 
wavelength equals 540 nm and the FWHM is equal to 20 
nm (b). The 3-bands NBI solution employs a set of three 
light sources at the following central-wavelengths and 
FWHM's: 415 nm (FWHM=30nm) (a), 445 nm 
(FWHM=30nm) (b), 500 nm (FWHM=30 nm) (c). In general, 
within NBI approach, the impact is imposed onto the 
electro-mechanical performance, both in relation to light-
sources and image-capturing devices control. 

Next, a more complicated approach can be realized by 
Multi-Band Imaging (MBI). Additionally, MBI can be 
compatible with the FICE (Fuji Intelligent Color 
Enhancement) standard [11]. This standard uses a digital 
image processing technique that enhances an appearance 
of analyzed structural-details by the use of RGB driven 
filters located very closely to CCD-sensor pixels. This 
standard employs 60 wavelengths, covering 400nm - 695 
nm wavelength-range, incremented by 5 nm steps, which 
can be swept with an arbitrary, controllable sequence. In 
general, MBI approach concentrates on a captured-image 
analysis and relies on computer-based, intense, data 
computations. That solution is, however, relatively 
expensive. 

Commonly, for all types of multispectral works, this step 
of image-data computations creates a separate, interesting 

problem related to desired extraction of image information. 
Generally, an each solution for such analysis consists of: an 
input image segmentation [12,13], followed by denoising 
and image dimensional reduction [14,15], and finally, an 
image reconstruction [16,17]. Thus, these procedures lead 
to reduction of unwanted information, reduction of computer 
memory load, and a subsequent improvement of 
multispectral device performance. 

In the current paper we present a newly designed and 
constructed opto-mechanical experimental setup, which 
goes beyond NBI standard, uses 21 spectral bands, 
captures naturally lit objects, and employs computer-based 
image processing. The implemented image-analysis 
procedures, leading to final human-eye-sensitive RGB 
image, can be automatic. This solution is relatively cheap 
and capable of working with diverse laboratory imaging 
devices.   

 
Experimental setup 

Multi-band imaging was implemented by the use of  
VariSpec liquid-crystal filter (CRI Inc.), for which the 
spectral transmittance was driven by the USB interface 
within the 400 nm - 740 nm wavelengths range. The 
transmitted wavelength was adjusted with 1nm accuracy. 
The filter was mounted in front of the variable focus Tamron 
55-200mm F/4-5.6 lenses, followed by a thermoelectrically 
cooled, black&white, 1/8'' (658 x 496 pixels) 'Luca' CCD 
camera manufactured by Andor Inc. Next, the self-made, 
afocal, two-lens system enabled the opto-mechanical 
coupling to the output optics of various devices (a 
microscope, camera lenses, endoscope etc.), and was 
mounted in front of the LCD filter (Fig.1). 

The optimum filter performance was achieved for optical 
rays passing parallel to the device optical axis, therefore, for 
an image placed at infinity. The afocal system assured that 
by nature. The computer-controlled CCD camera enabled 
read-out of captured information from an every single pixel. 
The variable-focus lenses enabled adaptation of optical 
magnification to the optical characteristics of an arbitrary 
external device. 

Examples of skin cancer images captured by the system 
are given in figure 2. It should be emphasized, however, 
that our directly captured images were black&white. Thus, 
the proper color scale of the device, depending on the LCD 
filter characteristics, the camera spectral sensitivity, and the 
spectral characteristic of applied light-sources, had to be 
found. 
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Fig. 1. Construction details of the opto-mechanical system (a), the 
afocal lenses can be substituted directly by a microscope ocular 
(b), by reversing the afocal lenses it can be coupled with a low-
aperture device (c), or (for all above cases) the system can be 
modified by a beam-splitter to provide a fraction of signal to the 
optical spectrometer (d)  

 
This is why we calibrated the device to the normalized 

spectral space on the basis of photographs captured from 
the referenced ColorChecker® set, manufactured by the 
GretagMacbeth company. This set of images created so-
called training set. The ColorChecker® consists of patterned 
color sheets expressed by the normalized units defined by 
the International Commission on Illumination (CIE). We 
made separate images for each color, recorded captured 
pixels intensities (signatures)  and transformed them into 
the normalized spectrum. The assumption of linear relations 
between the device spectral space and that normalized was 
applied. Thus, we took the classical least-mean square-
method to determine the linear coefficients for that 
transformation [18]. Two approaches, called '1vs1' (one vs. 
one) and 'ALLvs1' (all vs. one), were considered. For the 
'1vs1' spectrum, the value of the normalized space depends 
only on the corresponding single value of the device image-
space. In contrast, in the 'ALLvs1' approach,  the 
normalized value consists of the linear combination of all 
device image-space values. 

The results of calibration, expressed by the relative 
mean absolute error (RMAE). The comparison of the 
normalized spectra with the pattern is  given in figure 3. In 

the figure it is seen that the shorter wavelength range is 
noisy, what causes errors, especially for the 'ALLvs1' 
method. The noise can be reduced, however, by the use of 
a more intense light source or by the elongation of  CCD 
camera snapshot time. 
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Fig. 2. A series of multispectral images obtained for skin tissue with 
centrally located cancer region. The numbers below figures are 
central wavelengths of transmitted bands expressed in nanometers  

 

Numerical procedures and image analysis 
In figure 2 captured images for the selected spectral 

bands (windows) are seen. The colored images are located 
strictly at spectral positions set by the LCD filter. It is 
evident that for some spectral bands information is not 
detectable. Thus, the proper multispectral information 
processing is needed for a reasonable reconstruction of 
images, keeping in mind the postulate of unwanted 
information reduction. Firstly, we should mention, that there 
is a real logistic problem with the elaboration of huge 
amounts of data stored in multi-dimensional color spaces. 
The problem results from the fact that an every pixel - one 
from 326368 (658 x 496) in our VGA-standard camera - 
collects spectral information from 21 spectral bands. This is 
why the reasonable reduction of that information to lower 
dimensional color-spaces, which preserves however, the 
majority of information, has to be carried out. 
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Fig. 3. Measured, during the training procedure, the normalized 
spectra of the selected colors; for blue, green, orange, and the 
white colors using the '1vs1' and the 'ALLvs1' methods. The 
registered spectra are compared with a standardized, ideal pattern. 
The 21 values of wavelengths, at abscissa, define the central 
positions of spectral windows used in experiments 
 

In general, the solution of the problem is based on the 
assumption that some image attributes (intensities) are very 
often correlated each other, while some of them are quite 
random. There are plenty of dimensionality-reduction 
techniques. In general, they can be subdivided into the two 
main categories: the linear and nonlinear methods [19-21]. 

One of the most well known examples of linear method 
is the Principal Component Analysis (PCA), which applies 
the linear combinations of input image attributes, and tries 
to find the maximized variance of this combination.  

The extension of the PCA method is the Kernel Principal 
Component Analysis (KPCA) - the nonlinear method [21]. 

The KPCA transforms quite easily the original image space 
using so-called kernel functions. Within our research efforts 
we tested both PCA and KPCA.  

The above-mentioned dimensionality reduction 
techniques are based on the so called machine learning 
approach.18 Machine learning consists of two steps: (a) the 
above-mentioned training phase, (b) the working one, which 
reduces the input spectra and transforms it into the reduced 
image-space.  

There is also another important issue related to the 
Kernel PCA approach. It has O(n2) computation complexity 
and the memory required to store the M matrix elements. It 
means in practice, that for the multispectral VGA image, 
and values coded with the double precision, over 700 
gigabytes of memory are required. This is why, the number 
of elements in the training set has to be reduced. We can 
do this randomly or, for instance, we can select one row of 
every ten and one column of every ten. However, such an 
approach does not guarantee proper representation of the 
training set, since it could miss intrinsic image details. That 
is the reason to use the unsupervised classification23 to 
explore spectral space clusters and to include, in the 
training set, only their geometric centers, instead of the 
selected spectral signatures.  The number of 103 clusters 
seems to be sufficient to cover all the possible image 
objects and this requires only 7 megabytes of memory; 104 
clusters requires 760 of megabytes, which is still 
acceptable. In our system we deployed a k-means 
algorithm for clustering,18 but the proposed approach allows 
application of any unsupervised classification technique.  

To evaluate the effectiveness of dimensionality 
reduction performed the by PCA method we calculated 
aggregated, total variance cover of the given number of the 
first principal components. The results, given in figure 4, are 
satisfactory. Our visualization stores almost 55% of the 
input variance with a 14% compression ratio. Nevertheless, 
45% of the variance is missed. To obtain variance cover 
above the 90% level, 13 attributes of the reduced space are 
required, while for the 95% level, 16 attributes are 
necessary. 

 
 

Fig. 4. The covariance cover as the function of the number of PCA 
attributes applied to the same image processing as that seen in 
figure 2. The case of three spectral attributes is marked (compare 
with figure 3) 
 

In figure 5 we present results of an image dimensionality 
reduction for PCA and KPCA methods as well as for 
different types of normalization. For an every image cancer 
regions are clearly visible.  

In the current work we presented a general purpose 
multispectral imaging device, designed and constructed 
from hand-made as well as commercially available parts. 
Our tests, based on PCA and KPCA reduction methods, 
show the usefulness of both approaches. For the presented 
region of interest the best quality image was obtained for 
the KPCA approach and the N2 normalization [22], since 
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internal structure details of cancer were localized. 
Importantly, such type of information is not detectable in 
normal procedures, thus for spectral channels treated 
independently. 
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Fig. 5. Results of spectral signature dimensionality reduction for 
images presented in figure 1. Descriptions: KPCA – the reduction 
with the use of polynomial kernel function, N1, and N2 are symbols 
of normalization,22 respectively. 
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