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Supervised and unsupervised segmentation of multispectral 
retina images 

 
 
Streszczenie. W pracy zaprezentowano metodę segmentacji wielospektralnych obrazów dna oka ukierunkowaną  na diagnostykę  schorzeń jaskry i 
retinopatii cukrzycowej. Akwizycja wielospektralna prowadzona jest w 21 oknach widma z zakresu 400nm do 740nm na bazie elektronicznie 
sterowalnego filtra ciekłokrystalicznego i wysokiej czułości monochromatycznej kamery CCD. Przedstawiono uzyskane wyniki segmentacji w 
podejściu nadzorowanym i nienadzorowanym  (Nadzorowana i nienadzorowana segmentacja wielospektralnych obrazów dna oka). 
  
Abstract. The  segmentation method of multispectral human eye images suitable in ophthalmic diagnosis of structural retinal features characteristic 
for glaucoma and diabetic retinopathy diseases is presented. A multispectral imaging was realized in 21 spectral windows, between 400nm and 
740nm, on a base of liquid crystal tunable filter and a high sensitivity monochrome camera. Results of supervised and unsupervised segmentation 
procedures of retina images, adopted from a color fundus device, are presented.  
 
Słowa kluczowe: obrazowanie wielospektralne, nadzorowane i nienadzorowane uczenie maszynowe, diagnostyka chorób dna oka. 
segmentacja obrazów wielokanałowych 
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Introduction 
Information captured in multispectral regime overcomes 
many limitations of electromagnetic radiance intensities 
stored directly in a conventional set of red, green and blue 
(RGB) detectors. RGB standard tries to follows human 
retina photoreceptors capabilities, however in practice, it is 
not able to restore exactly a rich set of colors perceptible by 
a human brain. Nowadays, multispectral imaging is widely 
used in laboratory works as well as in applied studies - let's 
mention examples from medicine [1], geology [2], 
agriculture [3], or art [4]. 
 Since multispectral image information overpasses 
human sensing capabilities, then it requires appropriate 
data reduction to match requirements of a given application. 
There are two main subsequent steps managing rich set of 
multispectral data. First, it bases on spectral components 
reduction, using for example PCA [5-7], KPCA [8], and ICA 
[9,10] methods, in order  to project multidimensional images 
onto 3-dimesnional color space, equivalent to RGB 
standard. Second,  a perception of vast multispectral data 
can be significantly enhanced by use of proper 
segmentation algorithms. Recently, segmentation is 
intensively applied in OCT diagnosis for 3-dimensional 
imaging of human retina [11]. It employs different specific 
solutions based on graph theory and dynamic programming 
for closed-contour structural features recognition [12], or 
can adopt energy-minimizing active scheme applied for 
contours segmentation with no edges [13], or finally, it 
segments OCT images by machine learning approach 
based on global image descriptors formed from multi-scale 
spatial pyramid [14]. 
 Our multispectral experiments were carried out with the 
single-photon sensitive thermoelectrically cooled LucaEM S 
DL-658M camera manufactured by Andor Technology, and 
computer-controlled VariSpecTM liquid-crystal (LC) tunable 
filter manufactured by Channel Systems Inc. The idea of the 
setup is given in Fig. 1.  The camera provides 658x496 
(VGA) active CCD pixels resolution, up to 37.2 fps frame 
rate, and the quantum efficiency between 40-50 % in the 
visible 400-700nm range. The LC filter offers 50ms 
response time, the bandwidth in the range of 7-20nm, and 
the  transmission outside the pass-band less than 0.01%. 
The pass-band can be swept continuously in the 400-
720nm range.  
 

 
 

Fig. 1 The scheme of experimental setup. 

 What is proposed here is a description of algorithms in 
quite general style, since future, specific implementations 
can employ different methods of image processing. We 
indicate only onto the steps which are sufficient for effective 
segmentation of multispectral images for the presented 
device.  
 
Image segmentation 

The outlines of the proposed methods, for multispectral 
image segmentation, are given in Fig. 2. Thus, the two 
approaches are considered here: firstly, the unsupervised-
automatic procedure, and secondly, the semi-automatic 
supervised method which requires user interaction and 
control. The common steps for both approaches are as 
follows: noise filtering, signature extraction, spectrum 
normalization, and image post-processing. 
 
Denoising: At the beginning, before analysis of specific 
image, in order to access desired information, it is 
necessary to reduce noise registered during capturing 
process. It is extremely troublesome problem, due to a 
relatively narrow spectral transmittance of LCD filter, which 
results in very low-level registered intensities for a given 
wavelength. Classical methods based on a low pass 
filtering, i.e. Gaussian blurring and median filtering, usually 
solve this problem [15].    
Signature Extraction: The next step, a signature 
extraction, determines spectral signatures (intensities as a 
function of registered wavelength) of an every imaged pixel. 
From that moment an image is further represented by a set 
of points described rather by their spectral properties, not 
by the multispectral device channels 
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Fig. 2  The outline of the multispectral image processing and the 
resultant image segmentation. 

 
Normalization: Thus, recorded spectral intensities strongly 
depend on represented wavelengths and the image local 
information. It results from a non-uniform spectral 
characteristic of the LCD filter and irregular lighting 
conditions. To normalize spectral information, and to 
minimize such dependencies, the spectral normalization 
should be carried out. Typically, the two normalization 
approaches can be realized. The first method is based on 
separate normalization of an every wavelength for different 
pixels (wavelength-based normalization), marked here as 
WN, while in the second method, spectral vectors are 
calculated for an every pixel and different spectral channels 
(pixel-based normalization) [16], marked in the following 
sections as PN.  
 A typical WN spectrum is fitted to (0,1) range in a linear 
way. It means that the smallest and greatest values of 
spectral components are determined for a considered 

image, and the linear scaling on intensities  ,, yxI WN

 
can be expressed as follows 

(1)          yxcyxIyxsyxI WN ,,,,,,    

where          ,,min,,max, yxIyxIyxs  , 

and      ,,min, yxIyxc  . 

 In a PN approach, spectrum components form a vector, 
which is resized to default unit length in following way 

(2)     
 :,,

,,
,,

yxI

yxI
yxI PN    

where  :,, yxI
 

is the spectrum norm. Usually, the 

Euclidean metric 

(3)     


,,:,, 2 yxIyxI  

can be employed to complete this step. The PN 
normalization offers choice of vector direction which points 
onto needed spectral feature, independently from an 
externally applied non-uniformly distributed light intensity.   
 Apart from the above, the normalization can be 
improved by calibration of capturing device to a specified 
spectral scale. During calibration process transformation 
between spectral scale of the device and referenced 
spectral scale is determined. If physical properties of both 
spectral scales are not known directly, then a supervised 
machine learning should be applied. It requires preparation 
of a representative training set, containing corresponding 
spectral instances for the scales. To fulfill this postulate we 
used multispectral photographs of GretagMacbeth 
ColorChecker with defined spectral components of its 
colors.  Details about such linear transformations can be 
found in [17], while nonlinear kernel based transformations 
are described in [18,19]. 
Classification, Segmentation and Associated 
Reconstruction: Before finalizing an image preprocessing, 
spectral signatures can be grouped (clustered) by 
unsupervised classification [17] using a given unsupervised 
segmentation approach, for example, the Waikato 
Environment for Knowledge Analysis (WEKA), which is a 
comprehensive suite of Java class libraries [20]. A classifier 
choice and its numerical initialization method choice are 
crucial decisions, since a number of interest group have to 
be specified in an image. Next, during reconstruction of 
segmented image, the connected components of the pixels 
belonging to the same classified group are determined. 
They form  regions of segmentation process (comp. Fig. 4., 
where unsupervised pixels of a different groups are 
represented by different colors).  
Postprocessing: Finally, a postprocessing step, which is 
common for unsupervised and supervised approaches, 
removes small insignificant regions and smoothes contours. 
Especially, in many situations the morphological open-close 
filtering [15], which employs specified size of structural 
element, rectangular or circular in shape, works effectively. 
Importantly, in order to reduce effectively adverse effects, 
the open-close filtering can be is iterated for the different 
sizes of structural element. 
Supervised segmentation: In supervised segmentation a 
training set, containing spectral signatures with specified 
class identifiers, has to be supplied. It is prepared by a 
manual choice of interested image regions. It can be 
assumed that only a few lines marked by a brush tool for an 
every class is sufficient [17]. 
Wavelength Selection: Automatic, supervised feature 
selection of spectral wavelengths removes from spectral 
signatures wavelengths containing only noise and the 
wavelengths which do not discriminate objects specified by 
the training set. This procedure forms simpler and more 
clear signatures, thus the consecutive classification should 
be easier. Next, the reduced spectral signatures are further 
labeled by supervised classification with a supplied training 
set. Similarly to unsupervised segmentation, the associated 
components of pixels, belonging to a given class, are 
postprocessed by a morphological filtering. The advantage 
of the supervised segmentation approach results from the 
fact that the assigning of classes to regions is determined 
by a training set .   
 
Disscussion of results 

In Fig. 3 selected multispectral images in the form of 
separate spectral channels are presented. The results of 
unsupervised segmentation by 'Fuzzy KMeans clustering, 
with different number of clusters, are shown in Fig. 4. The 
median filtering and PN normalization are performed before 
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clustering. The use of two clusters creates some 
boundaries of the optic disc, however the optic disc and the 
retina are not separated significantly. The segmentation is 
more accurate with greater number of clusters, when for 
instance, the yellow spot region is revealed. This causes, 
however, improper division of anatomical structures and 
can be observed, for a retina region, as different clusters. 
Thus, the segmented image requires further processing to 
identify segmented regions.  
 

    

    

    

    

    
Fig. 3 Input set of images of the human eye retina. The images 
captured for the following wavelengths (left-to-right, up-to-down, 
values in nm): 416, 432, 448, 464, 480, 496, 512, 528, 544, 560, 
576, 592, 608, 624, 640, 656, 672, 688, 704, 720. In right part of an 
image the optical disk is clearly seen. 
 

The training set used in supervised approach is 
visualized in Fig. 5. It contains manually labeled regions of 
the optical disc, yellow spot and an outside region. It is 
made by a windows software-brush tool. The chosen 
spectral signatures, with attributes obtained after WN and 
PN normalization, are reduced by a supervised feature 
selection with Greedy Hill Climbing search and wrapper 
subset evaluation followed by the Bayes classification [20]. 
The results shown in Fig. 6a and Fig. 6b are very promising. 
The optic disc and yellow spot regions are detected 
precisely.  There are some small missclassified regions of 
the yellow spot, located on the left side of the retina. 
However, this can be easily corrected by determination of 
the Greatest Connected Component analysis [20] of the 
yellow spot.  

In summary, we would like to emphasize that, we avoid 
estimation of numerical measures of segmentation quality 
using such descriptors like: 'true positives', 'true negatives', 
'false positives', 'false negatives'. Additionally, medical 
experts usually do not use analysis of multispectral 
channels - they are trained only for color fundus camera 
eye images. 
 Our contribution focuses on the construction of the 
multispectral imaging device for retinal diagnosis in global 
spectral spaces, out of RGB scheme. The prototype device 
allows us to acquire spectral data of the retina at the 
acceptable level of noise. The acquisition takes place in 
very difficult conditions because of the eye movements. 
However, the only spectral data of image pixels are 
sufficient for detection of basic anatomical structures. 
Importantly, our approach does not take into consideration 
local properties of pixels neighborhood.  
 

a) b) 

c) d) 

e) f) 
-

g) 
h) 

Fig. 4 Unsupervised segmentation by Fuzzy KMeans classification: 
a) two classes b) three classes c) four classes d) five classes e) six 
classes, f) seven classes, g) eight classes, h) nine classes. 
 

 
Fig. 5. (color online) Manual labeling of an image: the red mark 
(outer region), the grey mark (yellow spot), the yellow mark (optical 
disk). 
 

 
a) 

 
b) 

Fig. 6. (color online) The supervised segmentations: a) without 
postprocessing, b) with postprocessing. 
 
  The retina diagnosis methods presented in the 
literature, for fundus-camera eye-images, cannot fully rely 
on direct color features of images. In other words, the 



114                                                                         PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 88 NR 12b/2012 

spectral space of retina images in multispectral imaging is 
more discriminative in comparison to classical method. The 
presented segmentation algorithm will be improved by 
utilizing the local properties, and as we expect, that 
multispectral imaging will allow for more robust retina 
segmentation.   
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