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Mathematical modelling of transient states in a drive system  
with a long elastic element 

 
 

Streszczenie. W pracy przedstawiono model matematyczny głębokożłobkowego napędu asynchronicznego z długim elementem sprężystym. 
System rozpatrywano jako układ o elektrycznych i mechanicznych parametrach rozłożonych. Dla opracowania różniczkowych równań stanu 
wykorzystano nawą interdyscyplinarną metodę, która bazuje się na modyfikacji zasady Hamiltona-Ostrogradskiego. Na podstawie modelu poddano 
analizie stany nieustalone pracy układu napędowego z silnikiem głębokożłobkowym. Wyniki symulacji komputerowej przedstawiono w postaci 
graficznej. (Model matematyczny głębokożłobkowego napędu asynchronicznego z długim elementem sprężystym) 
  
Summary. In the paper a mathematical model of a deep-slot asynchronous drive with an elastic element is presented. The system is considered as 
having distributed electrical and mechanical parameters. In order to derive differential state equations a novel interdisciplinary approach was used, 
based on a modification of Hamilton-Ostrogradsky principle.  On the basis of the model the transient states of the drive system with deep slot motor 
were considered. The results of computer simulations were presented in the graphical form.  
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Introduction 

In the paper a mathematical model of an asynchronous 
drive with a long elastic shaft line with deep slot motor was 
considered. In the classical long shaft lines of asynchronous 
drives are usually considered as connections of elementary 
mechanical units [2]. Such approach in the general case 
does not sufficiently refer to fundamental physical 
approaches, in particular for nonlinear system parameters. 
In order to avoid this, a mathematical model of shaft line 
was proposed as a system of distributed electrical and 
mechanical parameters. Also, in order to avoid 
decomposition of the complex electromechanical system, in 
the present work the mathematical model of the 
asynchronous drive is developed on the basis of novel 
interdisciplinary variational principle, which is based on an 
extension of Hamilton-Ostrogradsky principle to 
nonconservative dissipative non-autonomous systems 
using a modification of the well-known Lagrange’s function 
[1]. It means that the mathematical models of these devices 
are described with differential equations with ordinary and 
partial derivatives.  

Therefore, the aim of the paper is to obtain a 
mathematical model of a deep-slot asynchronous drive with 
a long elastic shaft line, on the basis of variational 
principles. Also the analysis of transient electrical and 
mechanical states on the basis of the developed model is 
considered. 
 
Mathematical model of the system.  

Mathematical model of the electromechanical system 
obtained with the use of variational methods is presented 
[1, 4]. In the analyzed example an electric drive has been 
presented. It consists of a deep slot asynchronous motor, 
which rotates the mechanism of active load with an 
assumed value of inertia moment through a long elastic 
shaft (Fig. 1) 

 

Fig. 1. A graph of an asynchronous drive 

For the electromechanical system (Fig. 1) the components 
of Lagrangian are presented [1] 
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where *T  – kinetical coenergy, *P  – potential energy, *  – 
dissipation energy, *D  – energy of external,   , , ,T P D  – 

densitites of the aforementioned functions, EMM  – 

elektromagnetic moment of the motor, M  – load moment 

of the drive, J  – total inertia moment of the electric drive, 

,S R  – indexes for reference to stator and rotor, 

respectively, Q  – charge in the circuit, i Q   – current in 

the circuit,   – total magnetic coupling, Sr  – resistance of 

stator winding, RLr  – resistance of rotor head part, Su  – 

phase voltage of motor supply, Ru – voltage in bars of rotor 

cage, ( , )x t  – shaft return angle, / t     – angular 

velocity of shaft,   – additional integration variable, G  – 
module of transverse elasticity,   – coefficient of internal 
dissipation in the shaft, x  – current coordinate along the 
shaft,   – density of shaft material, pJ  – polar inertial 

moment of the shaft, ( , , ,SA SB SCQ Q Qq T, , )RA RB RCQ Q Q ; 
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( , , ,SA SB SCi i iq T, , )RA RB RCi i i  – generalized coordinates 

and velocities. 
 
The variation of action functional [1] is gives as 
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where *L  – modified Lagrange’s function, L  – linear density 
of the modified Lagrange’s function [1, 2]. 

The variation of action functional according to Hamilton 
will be equal to zero only in the case, when the dynamical 
system is described with Euler-Lagrange’s equations [2]  
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where * * * * *L T P D      
and with Euler-Poisson equation [1, 4] 
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where L T P D    . 

Substituting Lagrangians *L  into Equation (5), and L  
into Equation (6):  

 (7)  0, 0SA SB SC RA RB RCi i i i i i      ; 

 (8)  0, 0SA SB SC RA RB RC            ; 

 (9)  ,S S S S R RL R R    Ψ L i ψ Ψ L i ψ ; 

 (10)  1 1 1, ,S R S S RL RL
  

      ψ ψ Π ψ L α L α , 

where   – fundamental magnetic couplings, SL  – 

dissipation inductance of stator windings, RLL  – 

dissipation inductance of  
tooth-end face dissipation of the rotor, transforming the 
system from transformed currents to t=hase curents, the 
mathematical model of the electromechanical system was 
obtained: 
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The electromagnetic moment of the motor is described 
with the relationship [1]  

 (24)  03 ( ) /E SB RA SA RBM p i i i i    . 

The voltage in the rotor cage bars was determined from 
the equations of magnetic field [1]: 

 (25)  
2

2
, , ,j j ju i

j
H H Hk k

E j A B
t zz

  
   

   
 

with the boundary conditions [1]: 
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where H – component of magnetic field strength along z 
axis, ,u ik k  – transformation coefficients for the motor with 

respect to voltage and current, respectively,   –magnetic 
reluctivity of the wire in the rotor slot,   – electri 
conductivity of the wire in the rotor slot, a  – zone of slot 
uncovering 
 

Carrying out the spatial disceptization of the equation 
(24) taking into account (25) the equations with ordinary 
derivatives in the normal Cauchy form were obtained [2, 3]  
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where k – number of the discretization unit, ( 10k  ),  
 
The sought voltage is given with (28): 

 (28)  , ,1 ,2 ,3( 3 4 ), ,
2
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, 

The equations (13) take real sense only when they take 
into account boundary and initial conditions, i.e search for  
the motion of the mechanical system leads in the 
mathematical sense to a solution of a mixed problem. Of 
course initial conditions are preset, and the main problem is 
to solve the mixed problem and finding boundary 
conditions. These conditions were determined from the 
d’Alambert principle, i.e. moment equilibrium equations on 
the shaft boundaries. So, for the left and the right 
integration boundaries, the boundary conditions are given 
with the relationships: 
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Successive disceretized equations with respect to Fig. 1. 
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Discretizing the boundary conditions (29), (30), the 
following relationships were obtained: 
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Solving together the equations (31) – (33): 
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The system of differential equations (11), (12), (27),(34) 
– (37) is subject to integration, taking into account (14) – 
(26), (28). 

 

 

Fig. 2. Transient time dependencies of angular velocities of the 
rotor (continuous line) and the drive mechanism (broken line) 
 
Results of computer simulations.  

For transient analysis a deep slot asynchronous drive, 
whose graph is depicted in Figure 1, has been applied. The 
nominal data for the motor: РН = 320 kW; UН = 6 kV; ІН = 39 
А; 740Н  s-1, p0 = 4, JR = 49 kg m2 and parameters Sr = 

1,27  , RLR = 0,21  , S = 38,9 H-1, RL = 70 H-1, h  = 

0,038 m, l  = 0,23 m, a  = 0,005 m, J = 49 kg  m2. The 

magnetization curve of the motor is given with the equation: 

12,4arctg(0,066 )m mi  . The parameters of long shaft are: 

108,1 10G    N  m, 7850   Kg/m3, 0,05d   m, 4,45L   

m, 0,5   N  m2  s, 0,05x  m. 
In Fig. 2 the dependencies of rotational velocity of the 

rotor (solid line) and drive mechanism (dashed line) are 
presented as functions of time. Analyzing these two curves 
one can notice a substantial difference between them. 
Oscillations of both processes are almost inverted by 180 
deg. In Figs. 3 and 4 the transient currents of phase A of 
the stator are shown. In Fig. 3 the current in the examined 
system is depicted, whereas in Fig. 4 the same current is 
shown, but for ideally stiff shaft. From the comparison we 
can draw a conclusion about a strong coupling of 
electromagnetic and mechanical fields, i.e that mechanical 
wave transforms into electromagnetic one and vice versa.  

 
Fig. 3. Current of phase A of the 
stator as the function of time for 

the elastic shaft 

 

 

Fig. 4. Current of phase A of 
the stator as the function of 
time for an absolutely stiff 

shaft 

In Fig. 5 a dependence of elasticity moment in the shaft 
line versus time between the discretization nodes 1 and 2 is 
depicted. In this Figure the frequency of oscillations of shaft 
line may be read. 

 

Fig. 5. Elasticity moment in the shaft line between discretization  
nodes 1 and 2  

 

 
Fig. 6. Start-up moment of the 
asynchronous moment versus 

time 

 
Fig. 7. Start-up moment of the 
asynchronous moment versus 

time 

 

 
Fig. 8. Spatial distribution of in the slot  
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Figs. 6 and 7 depict transient start-up moments of the 
drive motor. In Fig. 6 the moment is shown for the examine 
motor, whereas in Fig. 7 for the non-elastic system. The 
physical processes are similar to those from Figs. 3 and 4. 
Here the principles of electromechanical energy 
transformations are also visible. 

Figs. 8 and 9 present the spatial distribution of induction 
in a deep slot of the asynchronous for two cases 
considered, i.e. for the elastic system and for the stiff 
system. From the Figures it follows that there are different 
induction distributions then, what validates the well-known 
concept of electromechanical energy transformation on the 
level of electromagnetic and mechanical fields.  

 
Fig. 9. Spatial distribution of induction in the slot for  
absolutely stiff shaft line  

In Fig. 10 a spatial-temporal distribution of rotation 
velocity of the shaft line in the range [0; 0,6]t  s is shown.  

 

Fig. 10. Spatial-temporal distribution of rotational velocity  
for [0; 0,6]t  s 

 

Fig. 11. Spatial-temporal distribution of rotational velocity  
for [3,0; 3,6]t  s 

In Fig. 12 the same dependence is shown, as in Fig. 11, 
but for time range: [3,0; 3,6]t  s. 
 

Conclusions 
The application of novel interdisciplinary method 

presented in [1] made it possible to develop a mathematical 
model of rather complex drive system consisting of a deep 
slot asynchronous motor and a long elastic shaft, avoiding 
the decomposition of homogenous electromechanical 
system. 
By means of computer simulations realistic depictions of 
movements of elastic wave along shaft and its influence on 
electromechanical wave in the rotor slot and vice versa 
have been obtained. It was possible only by the use of a 
composition of mathematical models of a deep slot 
induction motor and long shaft obtained from variational 
principles. 

A combination of ordinary differential equations and 
partial differential equations in a single system makes it 
possible to describe complicated processes from the 
physical principles resulting from the least action rule [1, 4]. 
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