Performance of some novel optimization algorithms

Abstract. Three global optimization algorithms are tested against some chosen benchmark tests with known minima. Particle Swarm Optimization yields results closest to the sought minima, but is also the slowest algorithm. The hybrid Simplex-Simulated Annealing approach requires fine-tuning of its settings in most cases.

Streszczenie. Przetestowano zachowanie trzech algorytmów optymalizacji globalnej wykorzystując wybrane zadania testowe o znanych minimach globalnych. Optymalizacja metodą roju cząstek daje rezultaty najbardziej zbliżone do poszukiwanych, lecz równocześnie jest to najwolniejszym algorytmem z rozpatrywanych. Podejście hybrydowe simpleks – symulowane wyżarzanie wymaga dostrajania swoich parametrów w większości przypadków. (Ocena wybranych nowoczesnych algorytmów optymalizacji).

Keywords: optimization, benchmark functions, MATLAB.
Słowa kluczowe: optymalizacja, funkcje testowe, MATLAB.

Introduction

Optimization problems arise in many problems in electrical engineering, e.g. parameter estimation for hysteresis models [1-3], design of electric machines [4,5] and other devices [6-8] etc. Classical methods used for solving highly nonlinear problems are sometimes slow convergent or not robust enough, therefore much attention is paid to alternative approaches based e.g. on artificial intelligence methods.

In order to compare the performance of optimization algorithms, a number of benchmark problems with known solutions has been proposed [9-12]. A similar approach is applied in cryptography to test the strength of developed ciphers. The aim of the present paper is to provide a comparison of some novel optimization algorithms. Particular attention is paid to the algorithm, which mimicks a social-behavioural collective action, i.e. Particle Swarm Optimization [12-14]. Collective interaction between similar units is well recognized e.g. in ferromagnetism [15], where it has been transformed into a very successful concept of “effective field” [16]. This century-old idea has become the cornerstone of many contemporary descriptions of magnetization phenomenon. An interesting association of the idea of collective interaction with the concepts advanced by such renowned scientists and philosophers as Isaak Newton, Thomas Hobbes, Adam Smith and John Locke, as well as by the 20th century economists, has been presented in Ref. [12].

Another interesting association between contemporary condensed matter physics and optimization theory is behind the Simulated Annealing concept [17]. In statistical mechanics the behaviour of large aggregates of atoms subject to cooling is highly influenced by the cooling rate. Slow decrease of sample temperature results in smearing out the structural disorder and favours the approach to an equilibrium state corresponding to the global energy minimum. On the other hand, rapid cooling (quenching) yields defects and glass-like intrusions inside the material. It leads to the final state with a higher energy level than the equilibrium one, yielding defects and glass-like intrusions inside the material.

As pointed out in the previous section, there exists a number of benchmark tasks with known solutions used for testing the robustness of optimization algorithms. Those may be either unimodal (having just one global minimum) or multimodal. We have chosen some less known benchmark functions from the set prepared by R. Oldehuis [11]. The Figures presented in the paper were obtained using the ezimage tool developed by this author.

The first considered benchmark was the unimodal Matyas function, given with the relationship

\[
 f(x_1, x_2) = (0.26(x_1^2 + x_2^2) - 0.48x_1x_2)
\]

The function has a global minimum equal to zero at \((x_1, x_2) = (0, 0)\). The shape of the Matyas function is shown in Figure 1. White point denotes the global minimum.

```
Fig. 1. Matyas function
```

The second unimodal function under consideration was the Levi13 function. Its formula was a bit more complex:

\[
 f(x_1, x_2) = \sin(3\pi x_1)^2 + (x_1 - 1)^2\left(1 + \sin(3\pi x_2)^2\right) + \ldots + \left(x_2 - 1\right)^2\left(1 + \sin(2\pi x_2)^2\right)
\]
The function has a global minimum equal to zero at \((x_1, x_2) = (1,1)\). The function is shown in Figure 2.

![Levi13 function](image)

Fig. 2. Levi13 function

As the example of a multimodal function we have chosen the Himmelblau function, depicted in Figure 3.

![Himmelblau function](image)

Fig. 3. Himmelblau function (white points denote global minima)

Its formula is given with the following relationship:

\[
 f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2
\]

The function has four equal minima equal to zero for the following coordinates:

- \((x_1, x_2) = (3,2)\);
- \((x_1, x_2) = (-2,805118; 3,131312)\);
- \((x_1, x_2) = (-3,779310; -3,283186)\);
- \((x_1, x_2) = (3,584428; -1,848126)\).

The locations of all the minima can be found analytically, but the expressions are long and complicated.

Modelling results

We have used the Matlab codes developed by B. Donckels [20] for all tests. The calling convention for all algorithms was quite similar. In the first attempt we have kept the default settings for the optimization routines, as proposed by the author. These settings were chosen arbitrarily basing on experience of different researchers, but they may be easily fine-tuned for specific needs, using scripts provided by the code developer. Settings common for all algorithms are given in Table 1 below.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of iterations</td>
<td>2500</td>
</tr>
<tr>
<td>Maximum number of function evaluations</td>
<td>2500</td>
</tr>
<tr>
<td>Maximum difference between the coordinates of the vertices</td>
<td>10^-7</td>
</tr>
</tbody>
</table>

In nine cases the differences between the expected value 0 and final fitness values differed more than 0.25 (in the Figure only five such points are visible, because in some cases the solutions have converged to the same points). In the worst case the final value returned by the algorithm was 0.4412 and the minimum was found at \((1.6603; 0.9937)\), which by any means cannot be satisfactory. We suspected that this effect might be due to some non-optimal algorithm settings, e.g. too fast cooling rate. Therefore we carried out additional tests of the algorithm with altered settings. An overall improvement of the algorithm performance was obtained after modification of a number of its settings: COOL_RATE = 1,1 (the default value is 10, which means faster convergence), MIN_COOLING_FACTOR = 0,95 instead of 0,9, MAX_ITER_TEMP_FIRST and MAX_ITER_TEMP_LAST increased up to 100 (to be compared to 50, which is the default value; the meaning of these parameters is the number of iterations in the preliminary and the final (pure simplex) loop, respectively); MAX_ITER_TEMP was increased from 10 to 50 (this is the number of iterations in the remaining temperature loop). TEMP_START was set to 100 (originally it was predetermined by the code itself). As it can be easily seen, most of the introduced modifications were aimed at increasing the number of iterations within the algorithm loops. The corresponding increase in computation time was about the factor of two, yet the speed of the code.
was satisfactory (about a minute for the whole 100-element batch on a modern Intel i5 machine running 64-bit Matlab 7.10 on Windows 7. For the modified settings and the same set of guess points the algorithm has stuck just once at a point with fitness value above 0.25 (0.2884 @ (1.3257; 0.7743)). The number of iterations in that case was 522 and the number of function evaluations was 928. In 22 cases the final fitness values were of the order of 0.1, but otherwise they were of the order of 10^{-5} – 10^{-4} (the found points were quite close to the expected global minimum).

An interesting case was the multimodal Himmelblau function. All algorithms were able to locate the global minima; as usual PSO was the slowest, but most accurate, whereas SIMPSA revealed the opposite behaviour. In just one case SIMPSA did not approach one of the global minima by less than 0.1 (the value was 0.1026 for the point (3,025; 1,9134), which, however, remained not too far from the first minimum (3,2)).

Conclusions
Performance of three novel global optimization algorithms was tested using chosen benchmark tests with known solutions. The algorithms had to be called several times due to their stochastic operation mode. In all cases the code implementing Particle Swarm Optimization (with constriction factor to prevent premature convergence) gave the solutions closest to the sought minima. However, the preferred procedure is the Shuffled Complex Evolution algorithm, which combines accuracy sufficient for engineering purposes with increased speed. The default settings for the algorithms were satisfactory, however in some cases it was necessary to fine-tune them by hand (cf. “No free lunch theorem” [23]). This was particularly visible for the SIMPSA algorithm, which has failed to converge several times even for the simple matyas function.

Generally speaking, all the Matlab codes developed by B. Donckels [20] are useful for engineering applications. The implementations are fast and flexible enough to include them as part of more complex calculation routines.

Appendix – Matlab calling procedure
The functions to be minimized have to be called several times due to stochastic nature of the optimization procedures. The Matlab function arrayfun is useful for handling batch function calls.

fun = @(x1,x2) PSO(‘matyas’, [x1,x2], [-10,-10], [10,10];
numpoints = 100;
m1 = -10 + 20.*rand(numpoints,1);
m2 = -10 + 20.*rand(numpoints,1);
% the function 'matyas' is optimized using PSO in two
% dimensional space <-10;10> x <-10;10> consisting of 100
% points, whose coordinates are randomly generated
% [xcoord, fvalue, exitflag, out] = arrayfun(fm, m1, m2,
% 'UniformOutput', false);
The results of individual function calls are stored as cell arrays consisting of appropriate structures. These may be post-processed using cell2mat or cell2struct procedures.

Acknowledgements
K. Chwastek is grateful for support within the framework of research grant N N510 702540 from National Centre of Science.

REFERENCES
many-testfunctions-for-global-optimizers
muenchen.de/2718/, posted 7.11.2007
[16] Weiss P., L’hypothèse du champ moléculaire et la propriété ferromagnétique, J. de Phys. 4o série, t. VI (1907), 661-690

Authors: dr inż. Krzysztof Chwastek, dr inż. Mariusz Najgebauer, prof. nadzw. dr hab. inż. Jan Szczygłowski, Politechnika Częstochowska, Instytut Elektrotechniki, Ak. Armii Krajowej 17, 42-201 Częstochowa, E-mail: krzych / najgebauer / jszczyg@el.pcz.czest.pl