Feature Words Selection for Knowledge-based Word Sense Disambiguation with Syntactic Parsing

Abstract. Feature words are crucial clues for word sense disambiguation. There are two methods to select feature words: window-based and dependency-based methods. Both of them have some shortcomings, such as irrelevant noise words or paucity of feature words. In order to solve the problems of the existing methods, this paper proposes two methods to select feature words with syntactic parsing, which are based on phrase structure parsing tree (PTree) and dependency parsing tree (DTree). With the help of syntactic parsing, the proposed methods can select feature words more accurately, which can alleviate the effect of noise words of window-based method and can avoid the paucity of feature words of dependency-based method. Evaluation is performed on a knowledge-based WSD system with a publicly available lexical sample dataset. The results show that both of the proposed methods are superior to window-based and dependency-based methods, and the method based on PTree is better than the method based on DTree. Both of them are preferred strategies to select feature words to disambiguate ambiguous words.

Streszczenie. W artykule zaproponowano dwie metody selekcji cech słowa bazujące na analizie składni struktury frazy oraz analizie składni zależności. Badania przeprowadzono przy wykorzystaniu różnych baz danych. Propонowana metoda ma większą dokładność niż dotychczas stosowane metody: okna i zależności. (Selekcja cech słowa dla jednoznacznego wykrywania znaczenia z syntaktyczną analizą składni)

Keywords: Phrase structure parsing, Dependency parsing, Parsing tree, Word sense disambiguation. Słowa kluczowe: analiza składni frazy, cechy słowa.

Introduction

Word sense disambiguation (WSD) is to automatically determine the meanings of ambiguous words based on their context, which is one of hot-spot issues in natural language processing (NLP). WSD is one of basic tasks in NLP, which is crucial for natural language understanding and has important applications in machine translation, information retrieval and question-answering systems[1]. As Firth said, “You shall know a word by the company it keeps.”[2] The meaning of the ambiguous word is related with its context, which includes lexical feature, syntactic feature, semantic feature and discourse feature[3]. The effective selection of features and the assignment of WSD weights for them are the key problems for WSD, which would directly affect their performance.

Lexical feature, that is context feature words, is the most important basis of knowledge-based WSD. In general, there are two kinds of method to select feature words: window-based method and dependency-based method. The former is easy to be realized, but it may induce some short-distance irrelevant noise words and omit some long-distance relevant words. The latter can exactly select feature words, but it is confused with the paucity of feature words.

In order to solve the shortcomings of existing methods, this paper proposes the strategy to select feature words based on syntactic parsing. The key premise of our work is that: the words that are more adjacent on syntactic relation have stronger semantic relation, so they are more suitable to be selected as feature words each other. There are two kinds of syntactic parsing: phrase structure parsing and dependency parsing. The paper respectively puts forward the methods based on phrase structure parsing and dependency parsing, which select feature words and assign WSD weights to them based on syntactic parsing tree. In order to evaluate the performance of proposed methods, a knowledge-based WSD experimental platform has been designed. With the platform, experiments have been done on a publicly lexical sample dataset[4]. The experimental results demonstrate the good performance of the two proposed methods. Both of them are superior to the window-based and dependency-based method, and the method based on phrase structure parsing is better than the method based on dependency parsing.

The rest of this paper is structured as follows. Section 2 introduces related work on WSD and selection of feature words. Section 3 describes the two proposed method for feature words selection based on two kinds of syntactic parsing tree. The experiments are presented in section 4. At last, the conclusions are drawn and further work is mentioned.

Related Work

Methods of WSD can be divided into supervised, unsupervised, semi-supervised and knowledge-based methods. Supervised systems[5] need to be trained with sense-tagged corpus, learn the relationship between the specific sense and the context, and get a classifier for each word. Unsupervised approaches[6] utilizes clustering technique to cluster words based on their context to distinguish senses. Semi-supervised systems[7] adopt bootstrapping methods which learn knowledge from a small sense-tagged corpus and extend their knowledge with the existing knowledge. Knowledge-based methods[8, 9] mainly utilize external knowledge base, such as dictionary and ontology et al., and compute sense relatedness[10] or gloss overlaps to choose the most appropriate sense. In the paper, the methods to select feature words are mainly for knowledge-based WSD.

Patwardhan et al.[11] and Pederson et al.[12] have proposed the method to disambiguate the ambiguous words with their context words in a certain length of context window. Firstly, 2N content words around the target word are selected as feature words. Secondly, the relatedness of each sense of ambiguous words and feature words are computed based on WordNet. The sense which has the maximum overall relatedness with feature words is chosen as the right sense.

McCarthy et al.[8] have proposed the method to disambiguate the ambiguous words based on distributional similarity and semantic relatedness. Firstly, they select feature words based direct dependency relation. They parse a corpus with dependency parser to get a great deal of dependency triples. Based on the dependency triples, distributional similarities among words are computed and top-N similar words are chosen as feature words[13]. Secondly, the relatedness between each sense of ambiguous word and feature words is computed. The sense
with the maximum weighted sum of relatedness is select as
the right sense.

Agirre et al.[9] have proposed the method for WSD with
personalized PageRank. Similar with McCarthy et al, they
collect feature words with direct dependency relation.
Besides, Lu et al.[14] have proposed a WSD method based
on dependency relation and Bayes model. They also select
feature words with direct dependency relation.

To sum up the existing works, the methods to select
feature words can be divided into either window-based or
dependency-based method. The window-based method
selects context words in a certain length of window as
feature words. It is easy to be realized, but it doesn’t
consider any syntactic and semantic relations, so it is likely
to induce some short-distance irrelevant words and omit
some long-distance relevant words. The dependency-based
method can select feature words accurately. As it only
selects the words with direct dependency relations as
feature words, it often only collects few feature words which
is not enough to disambiguate the target words.

Chen et al.[15] have proposed a WSD strategy based
on dependency parsing tree matching. In the strategy,
Firstly, a large scale dependency knowledge base is built.
Secondly, with the knowledge base, the matching degree
between the parsing trees of each sense gloss and the
sentence are computed. The sense with the max matching
would be selected as the right sense. Inspired by
sentence are computed. The sense with the max matching
degree would be selected as the right sense. Inspired by
the strategy, we propose to select feature words based on
dependency parsing tree matching. In the strategy,
we propose to select feature words with direct dependency
relations. The words that are more adjacent on parsing
tree have stronger semantic relation. With the help of
parsing tree, the defects of windows-based and
dependency-based methods can be alleviated greatly. The paper respectively puts forward the methods based on
phrase structure parsing tree and dependency parsing tree.

Proposed Methods

Syntactic parsing is the process of analyzing the
structure of a sentence with respect to certain formal
grammar, which can determine the relations among the
words and the roles of them. The syntactic structure is
commonly expressed with tree data structure, which is
usually called as syntactic parsing tree, that is parsing tree.

According to the difference of grammars[16, 17], there are
phrase structure tree (PTree) and dependency tree (DTree).
The paper respectively proposes the methods to utilize
PTree and DTree to select feature words.

Method based on PTree

Phrase structure grammar was proposed by Chomsky in
1956[16], which was a mature formal language theory and
was applied widely. Phrase structure grammar is defined by
a finite set of all vocabulary (alphabet) \(V_p \), a finite set \(\sum \) of
initial string in \(V_p \), and a finite set \(F \) of rules of the form:
\(X \rightarrow Y \), where \(X \) and \(Y \) are strings in \(V_p \). Each rule
means to rewrite \(X \) with \(Y \). According the rewrite rules,
we can rewrite the string continuously until PTree is
generated. Here is an example sentence: The coaches
produced by FAW corporation and CN heavy duty truck
factory brought the workers to the plant . Its PTree is as
Fig.1.

PTree reflects hierarchical constituent relationships
among the words and phrases of the sentence. The words
that has the common ancestor and adjacent on PTree have
stronger syntactic and semantic relations. According to the
hierarchy structure of PTree, from the leaf node of
ambiguous word to the root node, the adjacent words on
PTree are collected layer by layer as feature words.
According to relative position between the feature word
and ambiguous word, which includes hierarchical relation and
path distance on PTree, WSD weight of the feature word is
assigned. Then, feature words are sorted on descending
order by weight. Top-N feature words are selected to
disambiguate the target word.

The algorithm to select feature words based on PTree is
as follow.

```
Algorithm 1
the algorithm to select feature words based on PTree

Input:
PTree: the phrase structure parsing tree of the sentence
TargetWord: the ambiguous word
FWordNum: the number of feature words that are needed

OutPut:
PFWordSet: feature words that are selected based on PTree

Step1. Initialize the variable TargetWordNode with
the leaf node of TargetWord on PTree, initialize the variable CurNode with it. Besides, initialize PFWordSet
with null.
```

![Fig. 1. Phrase Structure Parsing Tree (PTree)](image-url)
Step2. Based on PTree, expand from CurNode to its father node – Father. If Father is null, go to Step 5; otherwise, go to Step 3.

Step3. Get the set of the child nodes of Father – \{child\}. If the size of \{child\} is 1, save Father to CurNode, go to step 2; otherwise, add 1 to the layer variable – layer, go to step 4.

Step4. Traverse \{child\} to select feature words in this iterator of expansion.

For each child in \{child\}
- Initialize LeafSet with the leaf nodes of child
- If TargetWordNode \notin LeafSet
 - For each leafnode in LeafSet
 - Record the two kinds of information for leafnode (that is, layer number, path distance between the word and TargetWord on PTree)
 - Compute WSD weight of the leafnode with Eq.(1)
- Add leafnode to PFWordSet
EndFor
EndIf
EndFor

Step5. Sort PFWordSet on descending order by weight, and exclude the words whose orders are greater than FWordNum.

Step6. Return PFWordSet.

Note that, in Step 3, for layer, only the layer that has more than one child is counted. In this example, “trunk” can be collected after two layers are expanded. Its layer number is 2, path distance is 9. In Step 4, the WSD weight is assigned with Eq.(1).

\begin{equation}
\text{weight}(f_j) = \frac{1}{l^{\alpha} + \beta \log_{10} d}
\end{equation}

In the Eq.(1), \(f_j\) represents \(j\)-th feature word, \(l\) and \(d\) represent layer number and path distance on PTree. \(\alpha\) and \(\beta\) are tuning factors, which adjust the effects of \(l\) and \(d\).

Method based on DTree

Dependency grammar was established by Tesnière in 1959\[17\]. With dependency grammar, we can obtain the dependency relations among the words in a sentence. Dependency parsing structure can be represented with dependency triple or dependency parsing tree. The form of dependency triple is as: relation (governor , dependent). With dependency parsing, dependency parsing tree can be generated.

For the standard dependency syntactic parsing, its result is a standard tree, where each token of the sentence appears, which is a more surface-oriented representation. But, for WSD, it can be useful to regard some words, such as prepositions and conjunctions,\[18\] The dependency representation of collapsed dependencies with propagation of conjunct dependencies is a preferred representation, which is a more semantically interpreted representation. Dependencies involving prepositions, conjunctions, as well as information about the referent of relative clauses are removed to get direct dependencies between content words. Besides, dependencies involving the conjunctions are propagated. The dependency representation of collapsed dependencies with propagation of conjunct dependencies is more suitable to select feature words for WSD.

Here is an example sentence: The coaches which brought the workers to the plant are produced by FAW corporation and CN heavy duty truck factory. The results of dependency parsing for the example are as follow:

- det(coaches-2, The-1)
- nsubj(brought-4, coaches-2)
- nsubj(brought-4, coaches-2)
- rcmod(coaches-2, brought-4)
- det(workers-6, the-5)
- dobj(brought-4, workers-6)
- det(plant-9, the-8)
- prep_to(brought-4, plant-9)
- auxpass(paid-11, are-10)
- nn(corporation-14, FAW-13)
- agent(paid-11, corporation-14)
- nn(factory-20, CN-16)
- amod(factory-20, heavy-17)
- nn(factory-20, duty-18)
- nn(factory-20, truck-19)
- agent(paid-11, factory-20)
- conj_and(corporation-14, factory-20)

DTree of the sentence is as Fig.2. As shown in Fig.2, when dependencies are collapsed and propagated, the node may have more than one father node and there may appear cycles on DTree. Strictly speaking, it is a directed graph and no longer a real tree. But for the convenience of expression, we still call it DTree.

Fig. 2. Dependency Parsing Tree (DTree)

DTree reflects semantic dependency relations among the words of the sentence. The more adjacent words on DTree have stronger semantic relationship. Similar with method based on PTree, according to the structure of DTree, from the node of ambiguous word to other nodes, the adjacent words on DTree within a certain length of shortest path are collected as feature words. According to the length of shortest path between the feature word and ambiguous word, WSD weight of the feature word is assigned.

The algorithm to select feature words based on DTree is as follow.

Algorithm 2

the algorithm to select feature words based on DTree

Input:
- DTree: the dependency parsing tree of the sentence
- TargetWord: the ambiguous word
- MaxDist: the max length of the shortest path between feature words and ambiguous word

Output:
- DFWordSet: feature words that are selected based on DTree

Step1. Initialize the variable TargetWordNode with the node of TargetWord on DTree, initialize DFWordSet with null.

Step2. With Dijkstra algorithm, get the length of shortest path (len) between TargetWord and each other content node on DTree. And, add the nodes and their path lengths into the set – {node}.

Step3. Traverse \{node\} to select feature words.
For each node in {node}
If node.len <= MaxDist
Compute WSD weight of the node with Eq.(2)
Add node to DFWordSet
Endif
EndFor

Step4. Return DFWordSet.

In Step 3, the WSD weight is assigned with Eq.(2).

\[weight(f_j) = \frac{1}{d^\alpha} \]

In the Eq.(2), \(f_j \) represents \(j \)-th feature word, \(d \) represents the length of the shortest path between \(f_j \) and ambiguous word on DTree. \(\alpha \) is tuning factor, which adjusts the effect of \(d \).

Experiments

In order to evaluate the effectiveness of proposed methods, a knowledge-based WSD platform has been designed. The platform selects feature words with different methods. Through the comparison of WSD performance, this paper evaluates the effectiveness of proposed methods on a publicly available lexical sample dataset. The window-based, dependency-based, PTree-based and DTree-based methods are compared.

Framework of WSD Platform

![Fig. 3. Framework of WSD Platform](image)

The knowledge-based WSD platform includes two modules, as Fig.3.[19] The first module is to select feature words, as described in section 3.1 and 3.2. Based on different strategies, feature words are selected and assigned with appropriate weights. The second module is to select the right sense of the ambiguous word. Following with McCarthy[8], we calculate the semantic relatedness between each sense of the ambiguous word and the senses of the feature words, and choose the sense with most semantic overall relatedness as the right sense of the ambiguous word. For each sense, its relatedness score is computed with Eq.(3).

\[
score(w_s) = \sum_{f_j \in CF_w} \frac{wnss(ws_i,f_j)}{\sum_{ws_j \in senses(w)} wnss(ws_j,f_j)}
\]

Where:

\[
wnss(ws_i,f_j) = \max_{f_j \in wss(ws_i,f_j)}(wnss(ws_j,f_j))
\]

In Eq.(3), \(ws_i \) is the \(i \)-th sense of the target word \(W \), \(senses(w) \) is the sense set of \(W \), \(ws_j \in senses(w) \); \(f_j \) is the \(j \)-th feature word of \(W \), \(F_w \) is the set of feature words of \(W \), \(f_j \in F_w \); \(weight(f_j) \) is the WSD weight of the \(j \)-th feature word. Eq.(4) means that when \(wnss(ws_i,f_j) \) is computed, the sense of feature word that maximize the relatedness score with \(ws_i \) is selected. [8]

Dataset and Evaluation Measure

The dataset is provided by Koeling et al.[4], which is a dataset for lexical sample task and 41 words are included. The instances are from three domains, which are the sport and finance sections of Reuter Corpus and the balanced British National Corpus(BNC). There are about 100 instances for each word in a specific domain. In our experiments, we select the 3216 instances that are from BNC and have gotten sense agreement by the majority of taggers. Besides, we have converted the original sense tag with WordNet1.7.1 to WordNet3.0. [19]

The instances are parsed with Stanford Parser[18], WN Similarity package(v2.05)[20] is utilized to compute the semantic relatedness, which can provide six similarity measures and four relatedness measures. Context Vector relatedness measure is adopted in the paper.

There are several measures to evaluate the performance of WSD, such as accuracy, recall, coverage and F-Measure. In our experiments, we select recall as evaluation measure, which is computed with Eq(5).

\[
R = \frac{M}{N} \times 100\%
\]

In Eq(5), \(N \) is the total number of instances that need to be disambiguated and \(M \) is the number of instances that are disambiguated correctly.

Experiment Results

In the experiments, we respectively utilize four kinds of different methods, that are window-based, dependency-based, PTree-based and DTree-based methods, to get feature words for the target word, and compare their performances of WSD.

Result of Window-based Method (Win)

Window-based method gets feature words based on a certain length of context window. In the experiment, the size of windows is set to \(2N \). Centered with the target word, \(N \) content words before and \(N \) content words following the target words are selected as feature words, whose weights of WSD are uniformly set to 1. This experimental result is shown in Fig.4. The recall reaches the max value 38.99% when size of window is 16.

Result of Dependency-based Method (Depend)

Dependency-based method only selects the content words that have direct dependency relation as feature words. WSD weight of each of feature words is uniformly assigned to 1. The feature words are closely related with the ambiguous word, but the number of them is often few. Sometimes, the method would fail to find any feature word. In the experiment, the recall of the method is only 34.55%.

Fig. 4. Recall of Window-based Method
Detailed Comparison of Different Methods

In order to compare the four methods in detail, the recall of each ambiguous word is shown in Table 1. The results demonstrate the good performance of proposed methods. Both of PTree-based and DTree-based methods are superior to window-based and dependency-based method. Compared with window-based method, the recalls of PTree-based method and DTree-based method respectively surpass it by 0.87% and 0.53%. PTree-based and DTree-based methods consider syntactic and semantic relations among words, which make them select feature words more accurately. But, window-based method simply selects the words within a certain length of window as feature words, which make it be easy to induce short-distance irrelevant noise words and omit the long-distance relevant words.

Among the four methods, feature words selected by dependency-based method are most related with ambiguous words, however, the recall of the method is worst. The reason is as follow. Feature words that have direct dependency relations with the target word are often few in the sentence. In some cases, dependency-based method can’t get any effective feature word. Comparing the number of instances that fail to get more than one feature word, there are 9 instances for window-based, DTree-based and PTree-based methods, 255 instances for dependency-based method. Apparently, the dependency-based method fails to get effective feature words for many instances. This leads to worse recall than other methods.

Comparing PTree-based and DTree-based method, we find that recall of the former is 0.34% higher than that of the latter. This is beyond what we expect and make us surprised. PTree reflects hierarchical constituent relationships among the words and phrases of the sentence, while DTree reflects semantic dependency relations among the words of the sentence. It seems reasonable that DTree is more suit to select feature words than PTree. But, the experimental result shows that PTree is better than DTree. The reason for this may be that the dependency parsing technology is not as mature as phrase structure parsing. In our experiments, Stanford Parser gets dependency parsing tree based on phrase structure parsing tree. This makes that the accuracy of PTree must be lower than that of DTree. With the development and maturity of dependency parsing, PTree-based method is hoped to be promoted greatly.

Conclusions and Future Work

The paper proposes feature words selection methods based on PTree and DTree for WSD, and evaluates them with a public lexical sample dataset. Compared with window-based and dependency-based methods, our proposed methods select feature words based on PTree and DTree, which can avoid the problem of noise irrelevant words of window-based method, and solve the paucity of feature words of dependency-based method. Compared with PTree-based and DTree-based methods, the former is better than the latter. The results of experiments demonstrate the good effectiveness of PTree-based and DTree-based methods in the paper. Both of the methods are preferred strategies to select feature words to disambiguate the ambiguous word.

There are two aspects in the future works. On the one hand, we would pay more attention to DTree-based method. With the development of dependency parsing, DTree-based is expected to surpass PTree-based method. On the other hand, we would like to try to consider more information to improve the effectiveness of knowledge-based WSD. Besides WN semantic relatedness, word frequency and domain information also play important roles for WSD, so we would try to integrate them into knowledge-based WSD.

Result of PTree-based Method (PTree)

As mentioned in section 3.1, PTree-based method selects adjacent words on PTree as feature words. There are three parameters that affect the effectiveness of the method, that is, the number of feature words – n and adjustable factors – α, β. Firstly, we set α and β to 0, and test the effect of different n. The result is shown in Fig.5, by which we can find that when n is 8, the best recall is achieved. Secondly, the experiments are done to determine the value of α and β. As is shown in Fig.6, the recall reaches the max value 39.86% when n=8, α=0.4 and β=0.2.

Result of DTree-based Method (DTree)

As mentioned in section 3.2, DTree-based method selects adjacent words on DTree as feature words. There are two parameters that affect the effectiveness of the method, that is, the max length of shortest path length – n and adjustable factors – α. The experimental result is as shown in Fig.7. The best recall achieves at 39.52% when n=5 and α=0.8. (Note: If n is set to 1, DTree-based method is equal with dependency-based method.).

Fig. 5. Recall of Different Number of Feature Words

Fig. 6. Recall of PTree-based Method with n=8

Fig. 7. Recall of DTree-based Method

In order to compare the four methods in detail, the recall of each ambiguous word is shown in Table 1. The results demonstrate the good performance of proposed methods. Both of PTree-based and DTree-based methods are superior to window-based and dependency-based method. Compared with window-based method, the recalls of PTree-based method and DTree-based method respectively surpass it by 0.87% and 0.53%. PTree-based and DTree-based methods consider syntactic and semantic relations among words, which make them select feature words more accurately. But, window-based method simply selects the words within a certain length of window as feature words, which make it be easy to induce short-distance irrelevant noise words and omit the long-distance relevant words. Among the four methods, feature words selected by dependency-based method are most related with ambiguous words, however, the recall of the method is worst. The reason is as follow. Feature words that have direct dependency relations with the target word are often few in the sentence. In some cases, dependency-based method can’t get any effective feature word. Comparing the number of instances that fail to get more than one feature word, there are 9 instances for window-based, DTree-based and PTree-based methods, 255 instances for dependency-based method. Apparently, the dependency-based method fails to get effective feature words for many instances. This leads to worse recall than other methods.
Acknowledgment

This work is supported by research fund of “The Theory and Method of Intelligent Processing for Mass Language Information” and “Research on Coreference Resolution for Chinese Text” of Beijing Institute of Technology and Primary Funds of National Defense. Besides, we would like to thank greatly to Rob Koeling and Diana McCarthy for kindly providing the assistance, and thank Siddharth Patwardhan and Ted Pedersen for WN Similarity package.

REFERENCES

Authors: Wenpeng LU, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China, E-mail: lwupeng@bit.edu.cn; Besides, Wenpeng LU is a lecturer of School of Science, Shandong Polytechnic University, China; prof. dr Heyan HUANG, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China, E-mail: hhy63@bit.edu.cn; Chaoyong ZHU, School of Computer Science and Technology, University of Science &Technology of China, Beijing 230027, E-mail: zhuxiao1@mail.ustc.edu.cn