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Partial Inverse Most Unbalanced Spanning Tree Problem 
 
 

Abstract. In this paper, we consider the partial inverse most unbalanced spanning tree problem, which is how to modify the weights of the edges in a 
simple undirected weighted graph with minimum cost such that the partially given forest is contained in a new most unbalanced spanning tree. Two 
models are studied: the problem under the weighted Hamming distance and the problem under the weighted l1 norm. We present their respective 
algorithms that all run in strongly polynomial times. 
 
Streszczenie. Rozważano częściowo odwrotny najbardziej niezrównoważony problem drzewa rozpinającego, czyli jak modyfikować wagi brzegów 
niebezpośrednio ważonego grafu. Rozpatrzono dwa modele: ważonego dystansu Hamminga i ważonej normy I1. (Częściowo odwrotny 
najbardziej niezrównoważony problem drzewa rozpinającego) 
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Introduction 

The inverse optimization problem is to modify some 
parameters of the original problem, with minimum 
modification cost, such that some given feasible solutions 
become the optimal ones under the new parameters. 
Inverse optimization problem has attracted an increasing 
interest during the last several years and many applications 
have been found in the real world. (For example, see[1, 2].) 
Readers may refer to the survey paper [3] and the papers 
cited therein for a comprehensive review on the 
development in inverse optimization.  

In reality, obtaining the complete information about all 
variables of an optimization problem is difficult, and we may 
have only a partial solution instead of a full solution. 
Therefore, the inverse optimization problems can be further 
extended to more general models in which the purpose to 
revise the parameters with minimum cost is to let the 
resulting optimal solution contain a given partial solution. 
This type of problem is called a partial inverse optimization 
problem. Partial inverse optimization problems are more 
difficult and more realistic than normal inverse optimization 
problems. Some publications on partial inverse optimization 
problems can be found in the literature [2, 4, 5, 6, 7, 8, 9]. 
Only the partial inverse minimum assignment problem 
under l1 norm without bound constraints, the partial inverse 
maximum weight closure problem under the l1 norm, the 

partial inverse sorting problems under l1, l2 and l norms and 

the partial inverse minimum spanning tree problem under 
the constraint that edge weights can not be increased are 
known to be polynomially solvable. In this paper, we show 
that the partial inverse most unbalanced spanning tree 
problem under weighted Hamming distance and weighted l1 
norm can be solved efficiently by strongly polynomial time 
algorithms. 

Given a finite set E, a family 2E  of subsets of E and a 

real weight vector w(e) associated with every e E , we 

consider the problem of finding a subset F  for which 
the amount max ( ) min ( )e F e Fw e w e   is minimized or 

maximized. We call this problem the most balanced or the 
most unbalanced optimization problem, respectively. As a 
special case, the most balanced and the most unbalanced 
spanning tree problems have been investigated in [10]. [11] 
presented improved strongly polynomial time algorithms for 
a particular problem. [12] investigated some most balanced 
combinatorial optimization problems with a linear side 
constraint. [13] presented an inverse model for the most 
balanced problem and showed that this model can be 
solved in polynomial time whenever an associated min-sum 
problem can be solved in polynomial time. Some 

applications of the most balanced and the most unbalanced 
optimization problems have been presented in [10].  

The paper is organized as follows. In section 2, we 
introduce the partial inverse most unbalanced spanning tree 
problem under weighted Hamming distance and we present 
a strongly polynomial time algorithm to solve this problem. 
In section 3, we give some properties of the partial inverse 
most unbalanced spanning tree problem under weighted  l1 
norm and show that it is also strongly polynomially solvable. 
Some conclusions are made in section 4. 

 
The problem under weighted Hamming distance 

Given an undirected graph G=(V, E, w) where V is the 

vertex set and E is the edge set of G with V n  and 

E m , and w(ei) denotes the weight of the edge 
ie E . 

For any spanning tree T of G we define the degree of 
balance of T as ( ) max ( ) min ( )e T e TB T w e w e   . The most 

unbalanced spanning tree problem is to find a spanning tree 
*T  such that 

* max{ | }TT
D D T G  . We call *T  a most 

unbalanced spanning tree of G. Let F be a forest in G (see 

Fig. 1) and c(ei)  be the weight modification cost on 
ie E . 

Suppose that the the new weight of 
ie E is *( )iw e . Then 

for the partial inverse most unbalanced spanning tree 
problem under weighted Hamming distance, we look for a 

new edge weight vector *w  such that 

(a) under *w  a most unbalanced spanning tree *T  exists 

such that it contains F; 
(b) the total modification cost *( ) ( ( ), ( ))

i
i i ie E

c e H w e w e
  is 

minimized, where *( ( ), ( ))i iH w e w e  is the Hamming 

distance between *( )iw e  and ( )iw e , i.e., 

*( ( ), ( )) 0i iH w e w e   if *( ) ( )i iw e w e  and 1 otherwise. 

Denote * *( , )T w  be an optimal solution of this problem. 

 
Fig.1. Graph G and the forest 

1 2 3F C C C    
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Suppose that there are k components of F denoted by 

iC , 1,...,i k  (see Fig. 1). Contract each component 
iC  of 

F into a single vertex, denote the resulting graph by 
'G (see 

Fig. 2). Obviously, 
'G is connected since G is connected.  

 
Fig.2. Graph 'G  

 
We have the following Theorem: 

Theorem 1  There exists an optimal solution *w  such that 

for any edge 
ie E , *( ) { ( ) | }i j jw e w e e E   . 

Proof. It is easy to see that there exists an optimal solution 
* *( , )T w  such that *min{ ( ) | } ( )j j iw e e E w e    

max{ ( ) | }j jw e e E  for each 
ie E , for otherwise, we can 

modify *( )iw e  to min{ ( ) | }j jw e e E  or max{ ( ) | }j jw e e E , 

then *T  is still a most unbalanced spanning tree containing 
F and the total modification cost is minimum. Suppose that 
there exists *( )iw e  such that *( ) ( ) ( )l i kw e w e w e  , 

where *( ) max{ ( ) | ( ) ( )}l j j iw e w e w e w e   and 

*( ) min{ ( ) | ( ) ( )}k j j iw e w e w e w e  . Then we can set 

*( ) ( )i lw e w e  when *( ) ( )i iw e w e  and set 

*( ) ( )i kw e w e  when *( ) ( )i iw e w e . The total modification 

cost is still minimum. This completes the proof of Theorem 
1. ■ 

Denote the maximum edge weight and the minimum 

edge weight of G under w be max{ ( ) | }
LG j jw w e e E   and 

min{ ( ) | }
SG j jw w e e E  , respectively. And denote 

{( , ) | ( , ) \ ( ), , , 1,..., }i j i j i j lI v v v v G E F v v C l k    . By 

Theorem 1, for each pair ( , )i jw w , 
i jw w , let  *

LG jw w , 

*

SG iw w  . Then we modify the edge weights according to 

each pair and choose the one with the minimum 
modification cost. Note that there are at most 

| ( ) | (| ( ) | 1) / 2E G E G   such pairs. For the pair ( , )i jw w , we 

have the following algorithm: 
Algorithm 1 
Step 1. First we increase the weight of each edge in 

{ | ( ) }i i ie I w e w   to 
iw , and decrease the weight of each 

edge in { | ( ) }i i je I w e w   to 
jw . Denote 

{ \ | ( ) }i t t iE e G I w e w    and { \ | ( ) }j t t jE e G I w e w   . 

Go to step 2. 
Step 2. If there exists 

ie E , 
jf E  such that { , }F e f  

contains no cycle, then increase the weight of each edge in 

{ \ | ( ) }i i ie G I w e w   to 
iw , and decrease the weight of 

each edge in { \ | ( ) }i i je G I w e w   to 
jw . Otherwise, go 

to step 3. 
Step 3. If for any 

ie E , 
jf E , { , }F e f  contains a cycle, 

then ( )i jF E E  . Denote { \ | ( ) }ij i i iE e G I w e w           

{ \ | ( ) }i i je G I w e w  .  

If there exists two edges , iju v E  such that { , }F u v  

contains no cycle, then let *( ) ,iw u w  *( ) jw v w ; If there 

are two edges 
iju E  and 

i jv E E  such that { , }F u v  

contains no cycle, without loss of generality, suppose 
iv E , 

then let *( ) jw u w ; If for any , ij i ju v E E E , 

{ , }F u v  contains a cycle, then sort the cost of each edge 

of \ ( )ij i jG I E E E  in increasing order. Denote s by the 

first edge satisfying that there exists 
ij i jt E E E  such 

that { , }F s t  contains no cycle. Without loss of generality, 

suppose 
ijt E , then let *( ) jw s w , *( ) iw t w , go to step 

6; If 
ijE  , then sort the cost of each edge of 

\ ( )i jG I E E  in increasing order. Denote u by the first 

edge satisfying that there exists 
i jv E E  such that 

{ , }F u v  contains no cycle. Then ( )c u  is the optimal value 

in this phase, go to step 6. Finally, set the weights of the 

edges in 
ijE  to 

iw  or 
jw . Otherwise, go to step 4. 

Step 4.  
iE   or 

jE  . Without loss of generality, 

suppose 
iE  . For each edge 

jf E , sort the cost of 

each edge of 
ijE  in increasing order, and sort the cost of 

each edge of \ ( { })ijG I E f  in increasing order and put 

them at the end of the sorted edges in 
ijE . Denote by u the 

first edge such that { , }F u f  contains no cycle. Let 

*( ) iw u w , and change the weights of the edges in 
ijE  to 

iw  or 
jw . Go to step 6. Otherwise, go to step 5. 

Step 5. 
i jE E  . If there exists two edges , iju v E  

such that { , }F u v  contains no cycle, then let *( ) ,iw u w  

*( ) jw v w ; If | | 1ijE  or for any , iju v E , { , }F u v  

contains a cycle, then for each edge 
ijf E , sort the cost 

of each edge of \ ( )ijG I E  in increasing order. Denote u 

by the first edge such that { , }F u f  contains no cycle. Let 

*( ) iw u w , *( ) jw f w , go to step 6; If 
ijE  , go to step 

6. 

Step 6. Set the weights of the edges in 
ijE  to 

iw  or 
jw . 

Denote u and v by the two edges of 

\ ( )ij i jG I E E E with minimum modification cost and 

such that { , }F u v  contains no cycle. Let *( ) iw u w , 

*( ) jw v w . Compare the costs and find the minimum one. 

Theorem 2  Algorithm 1 solves the problem under weighted 

Hamming distance in strongly polynomially times. 
Proof. The correctness of Algorithm 1 is indicated in the 

above analysis. The computation in step 1 is (| ( ) |)O E G . 

The computation in step 2 to step 6 is 2(| ( ) | )O E G . Because 

there are at most | ( ) | (| ( ) | 1) / 2E G E G   pairs to be 

compared, we obtain that the total complexity of Algorithm 1 
is 4(| ( ) | )O E G . The proof is completed. ■ 

 
The problem under weighted l1 norm 

Let G=(V, E, w) be a simple connected undirected 

weighted graph with V n  and E m , where w denotes 

the weight vector defined on E. Let F be a forest in G and 
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1c  and 
2 :c E R  be two cost vectors. For each e E , 

c1(e) stands for the cost of reducing w(e) by one unit, and 
c2(e) is the cost of increasing w(e) by one unit.  

Let x=x(e) be a real function satisfying 

min ( ) ( ) max ( )e E e Ew e x e w e    for all e E , and for any 

spanning tree T of G we define the degree of balance of T 
under x as ( ) max ( ) min ( )x e T e TB T x e x e   . The problem 

under weighted l1 norm is to change w to *w  such that 

(a) under *w  a most unbalanced spanning tree *T  exists 

such that it contains F;  
(b) The cost * *

1 2max{ ( )( ( ) ( )), ( )( ( ) ( ))}
e E

c e w e w e c e w e w e


   

is minimized.  
We say that * *( , )T w  is an optimal solution. Set  

( , ) max ( ), ( , ) min ( ).
e Te T

U T x x e L T x x e


 （1）  

1 2( ) max{ ( )( ( ) ( )), ( )( ( ) ( ))}.
e E

c x c e w e x e c e x e w e


  （2）

We call ( , )U T x  the max-weight of T under x, ( , )L T x  the 

min-weight of T under x and c(x) the total modification cost 
of x. It is clear that ( )xB T  ( , ) ( , )U T x L T x . 

Theorem 3 Let ( , )T x be an optimal solution. Let 

' { : ( , ) ( ) ( , )}.E e E L T x w e U T x     Then '( \ ) 1E T E  . 

Proof. Suppose that there are two edges 
1f  and 

2f  in F 

such that '

1f E  and '

2 .f E  if 
1( ) ( , )w f L T x  and 

2( ) ( , )w f U T x , Let y be defined by 

(3)       
1 1

2 2

( ), ( ) ( ),

( ) ( ), ( ) ( ),

( ), .

w f if w e w f

y e w f if w e w f

w e otherwise




 



        

Then we have ( ) ( )y xB T B T  and ( ) ( ).c y c x  Otherwise, 

without loss of generality, suppose that 
1( ) ( , )w f U T x , 

2( ) ( , )w f U T x  and suppose that 
1( ) ( , )x f L T x  

or
1 2( ) ( ) ( , ).x f x f L T x  The case 

1( ) ( , )w f L T x and 

2( ) ( , )w f L T x  can be discussed similarly. From a similar 

discussion, we can obtain y with 
1( , ) ( )U T y w f  and 

( , ) ( , )L T y L T x , such that ( ) ( )y xB T B T  and ( ) ( ).c y c x  

Either of the above analysis contradicts the fact that ( , )T x  is 

an optimal solution. If there is only one edge 
1f F  such 

that '

1f E . With a similar discussion, we know that 

'\{ }T E F  . 

When 'F E and '\T E  . If '( \ ) 2E T E  , also 

from a similar discussion we can get the contradiction. If 
'

1\ { }T E f , without loss of generality, suppose that 

1( ) ( , )w f U T x . In this case, we know that 
1( ) ( , )x f L T x  

for otherwise we can also get the contradiction by 
constructing y with 

1( , ) ( )U T y w f  and ( , ) ( , )L T y L T x . 

This completes the proof of Theorem 3. ■ 
Theorem 4 For every optimal spanning tree T, there is an 

optimal function x such that ( , )T x  is an optimal solution, 

and both ( , )U T x  and ( , )L T x  are in { ( ) : }.w e e E  

Proof. Suppose that ( , )T y  is an optimal solution and at 

least one of ( , )U T y  and ( , )L T y  is not in { ( ) : }.w e e E  

Without loss of generality, suppose that ( , )U T y  is not in 

{ ( ) : }.w e e E  Note that ( , )U T y max ( ).e E w e  From 

Theorem 3, we know that there is only one edge f T  with 

( ) ( , )w f U T y  and ( ) ( , )y f U T y . Set 

(4)                     
1 { : ( ) ( , )},C e T w e U T y              

(5)                    
2 { : ( ) ( , )}.C e E w e U T y             

If 
1 ,C   from Theorem 3, we know that there is only 

one edge m T  with ( )w m  max ( )e E w e
 and 

( ) ( , )x m L T y . Also by Theorem 3, we have 

{ \{ }}max ( ) ( , ) ( )e E m w e U T y w m   . We obtain a new function 

x such that 
{ \{ }}( , ) max ( )e E mU T x w e  and 

( , ) ( , )L T x L T y  as follows:  

(6)               ( , ), ,
( )

( ), .

U T x if e f
x e

y e otherwise


 


                    

Since ( , ) ( , )U T x U T y , we have ( ) ( )c x c y  and T is a 

most unbalanced spanning tree containing F under x. If 

1 ,C   then the total reduction and expansion cost c(y) of 

the weight function y is  

1

1( ) ( )( ( ) ( , ))
e C

c y c e w e U T y


  （7）  

2( )( ( , ) ( )) ( ),Lc f U T y w f c y   

where ( )Lc y  denotes the cost for modifying the lower 

bound of the weights of E to ( , )L T y . Without loss of 

generality, we suppose that 
1

1 2( ) ( )
e C

c e c f


 . The case 

1
1 2( ) ( )

e C
c e c f


  can be discussed similarly. We obtain a 

new function x such that 
2

( , ) max ( )e CU T x w e  and 

( , ) ( , )L T x L T y  as follows: 

(8)        1( , ), ,
( )

( ), .

U T x if e C or e f
x e

y e otherwise

 
 


 

Note that ( ) max ( ) min ( )x e E e EB T x e x e    and the 

reduction and expansion cost of x is    

(9)             

1 1

2

( ) ( )( ( ) ( , ))

( )( ( , ) ( )) ( )

( ).

e C

L

c x c e w e U T x

c f U T x w f c y

c y

  

 




   

Hence ( , )T x  is also an optimal solution. The proof is 

completed. ■ 
Sort the edges of G to non-decreasing order with 

1 2( ) ( ) ( )ml w e w e w e u     . We have the degree of 

balance of the most unbalanced spanning tree of G under w 

is 
1( ) ( )mw e w e . Write 

1 max ( )e Fq w e  and 

2 min ( )e Fq w e . If l u  or 
1q u  and 

2q l , then any 

spanning tree containing F is an optimal solution, and we 
need not modify any weight of the edges of G. So suppose 

l u  or 
1q u  and 

2q l  in the sequel.  

First, we contract each component of F into a single 

vertex and denote the resulting graph by 
'G . Suppose that 

'G  is a simple graph. If there are multiple edges of 
'G , we 

can deal with the problems by a similar but more 
complicated method. Here we omit the discussions for the 
multi-graph case. Write 

'1 max ( ) ( )se G F
u w e w e

 
   and 

'1 min ( ) ( )te G F
l w e w e

 
  . If 

1u u  and 
1l l , we are 

done with any spanning tree containing 
,{ }s tF e e . This can 

be done in ( log )O E E  time. Otherwise, by Theorem 3, for 
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each pair of ( ( ), ( ))i jw e w e with , 1, ,i j m  and ( ) ( )i jw e w e  

we find the most unbalanced spanning tree T containing F 
with minimum total modification cost under the constraint 

that ( , ) ( ), ( , ) ( )i jL T x w e U T x w e  . Note that there are 

( 1) / 2E E   such pairs. We describe the main steps of this 

procedure as follows: 
 

Algorithm 2 

Step 1. Set 'E = { : ( ) ( ) ( )}i je E w e w e w e   . Contract 

'F E  and denote the resulting graph by 
'G . If one of the 

following three cases exists 
(a) \ ' 1F E  ; 

(b) \ ' 1F E   and '( ) 1V G   ; 

(c) \ ' 0F E   and '( ) 2V G  , 

we stop and turn to check the next pair of ( ( ), ( )).i jw e w e  

Otherwise go to Step 2.  
Step 2. We distinguish the following three cases: 

(a) \ ' 0F E   and '( ) 1V G  .  

(b) \ ' 0F E  and '( ) 2V G  . 

(c) \ ' 1F E  and '( ) 1V G  . 

If case (a) exists, for each edge 'e F E  , we compute 

the modifying costs for decreasing the weights to ( )iw e  and 

for increasing the weights to ( )iw e  by 
1, 2 , , md d d  and 

1 2, , , ,mi i i  respectively. Find two edges 
1 1,m n  in 

'F E  

such that 
1 1m n  and 

1 1m nd i  is minimum in 

{ : , 1, , , }.s td i s t m s t    Find a spanning tree 
1T  

containing 
1 1{ , }F m n   with the edges in 'F E  and 

denote the total modification cost by 
1C . 

For each edge 
'e F E  , we compute the modifying 

costs for increasing the weights to ( )jw e  and for each edge 

e with ( ) ( )jw e w e , we compute the modifying costs for 

decreasing the weights to ( )iw e . Similar to the above 

procedure we find two edges 
2 2,m n  in 

' { : ( ) ( )}jF E e E w e w e     such that 
2 2m nd i  is 

minimum. Find an spanning tree 
2T  containing 

2 2{ , }F m n  

in '

2{ }F E m   and denote the total modification cost by 

2C . 

For each edge 'e F E  , we compute the modifying 

costs for decreasing the weights to ( )iw e  and for each edge 

e with ( ) ( )iw e w e , we compute the modifying costs for 

increasing the weights to ( )iw e . Similar to the above 

procedure we find two edges 
3 3,m n  in 

' { : ( ) ( )}iF E e E w e w e    such that 
3 3m nd i  is minimum. 

Find an spanning tree 
3T  containing 

3 3{ , }F m n  in 

'

3{ }F E n   and denote the total modification cost by 
3C .        

Finally we can get the solution by choosing the minimum 

one of 
1 2,C C  and 

3C .  

Case (b) and case (c) can be applied similarly to case 
(a). By comparing all these minimum modification costs, we 
obtain the optimal solution * *( , )T x  . The computation in step 

1 and step 2 is (| |)O E . From the obove discussion, we 

know that the total complexity of Algorithm 2 is 
3

( )O E . We 

now have shown: 
Theorem 5 The problem under weighted l1 norm can be 

strongly polynomially solvable by Algorithm 2. 
 

Conclusions 

In this paper, we showed that the partial inverse most 
unbalanced spanning tree problem under weighted 
Hamming distance and weighted l1 norm can be solved 
efficiently by strongly polynomial algorithm. Since the great 
practical potential, it is meaningful to consider whether the 
problem with bound constraints or under other norms are 
polynomially solvable.  
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