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Abstract. Markov games, as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi-agent 
systems. In this paper, several learning automata based multi-agent system algorithms for finding optimal policies in fully-cooperative Markov 
Games are proposed. In the proposed algorithms, Markov problem is described as a directed graph in which the nodes are the states of the 
problem, and the directed edges represent the actions that result in transition from one state to another. Each state of the environment is equipped 
with a variable structure learning automata whose actions are moving to different adjacent states of that state. Each agent moves from one state to 
another and tries to reach the goal state. In each state, the agent chooses its next transition with help of the learning automaton in that state. The 
actions taken by learning automata along the path traveled by the agent is then rewarded or penalized based on the value of the traveled path 
according to a learning algorithm. In the second group of the proposed algorithms, the concept of entropy has been imported into learning automata 
based multi-agent systems to drive the magnitude of the reinforcement signal given to the LA and improve the performance of the algorithms. The 
results of experiments have shown that the proposed algorithms perform better than the existing learning automata based algorithms in terms of 
speed and the accuracy of reaching the optimal policy. 
 
Streszczenie. Zaprezentowano szereg automatów uczących bazujących na algorytmach systemów typu multi-agent w celu poszukiwania 
optymalnej polityki w kooperatywnej grze Markova. Proces Markova jest opisany w postaci grafów których węzły opisują stan problemu, a krawędzie 
reprezentują akcje. (Automat uczący bazujący na algorytmie znajdowania optymalnej strategii w kooperacyjne grze Markova) 
 
Keywords:  Multi-Agent Systems, Fully Cooperative Markov Games, Learning Automata, Optimal Policy. 
Słowa kluczowe: system typ[u multi-agent, proces Markova, automaty uczące. 
 
 
1. Introduction 

A Multi-Agent System (MAS) is composed of multiple 
autonomous and intelligent agents, with distributed 
information and computational ability that interact with each 
other in an environment to accomplish some tasks [1]. A 
cooperative multi-agent system consists of a number of 
agents attempting to maximize the joint utility through their 
interactions [2]. There are several Markov models reported 
in the literatures for multi-agent systems. One of these 
models is Markov Game (MG) [3, 4]. The Markov game 
view of MAS is considered as a sequence of games that 
have to be played by multiple players, while each game 
belongs to a different state of the system [5]. Markov games 
are extensions of Markov Decision Process (MDP) to 
multiple agents. In a MG, actions are the result of joint 
action selection of all agents, while rewards and the state 
transitions depend on these joint actions [4, 6]. In a fully 
cooperative MG called a multi-agent MDP (or MMDP), all 
agents share the same reward function, and they should 
learn to agree on the same optimal policy. In multi-agent 
systems, the need for learning and adaption is essentially 
caused by the fact that the environment of agent is dynamic 
and just empirically observable while the environment (the 
reward functions and the transition states) is unknown. 
Hence, the reinforcement learning methods are applied in 
MAS to find an optimal policy in MGs. In addition, agents in 
a multi-agent system face the problem of incomplete 
information with respect to the action choice. Assuming that 
agents get information about their own choice of action as 
well as that of the others, this is called joint action learning 
[6-8]. Joint action learners are able to maintain models of 
the strategy of others, and the explicitly takes into account 
the effects of joint actions. In contrast, independent agents 
only know their own action which is often a more realistic 
assumption since distributed multi-agent applications are 
typically subject to limitations such as partial observability, 
communication costs, and stochasticity. 

There are several methods for finding an optimal policy 
in MMDPs (fully cooperative MGs). In [9], an algorithm is 
proposed for learning cooperative MMDPs, but it is only 
suitable for deterministic environments. In [8], another view 
on Markov Games is taken, i.e. the game can be seen as a 

sequence of normal form games. In [8] an algorithm called 
as Nash-Q is proposed which under restrictive conditions 
converges to Nash equilibrium policy. In [10] MMDPs are 
approximated as a sequence of intermediate games. The 
authors present optimal adaptive learning and prove 
convergence to a Nash equilibrium of the game. In the 
approach reported in [11], MMDP is decomposed to local 
MDPs, these MDPs are solved independently, and the 
overall solution is then estimated using these local 
solutions. In [12], an online approach is proposed for 
solving MMDPs which primarily selects a greedy 
approximate policy and then uses online search algorithms 
to refine it and reaches the optimal solution.  

Recently, learning automata(LA) as a reinforcement 
learning model have been used to design multi-agent 
systems [13, 14]. Due to certain specifications such as 
structure simplicity, little need for information and feedback 
from the environment, learning automata are very useful in 
multi-agent systems. In [15], it is shown that a team of 
learning automata involved in a general N-person  Markov 
game converge to Nash equilibrium if each of team 
members makes use of a linear learning algorithm called LR-

I algorithm. In [5], a model based on interconnected learning 
automata is reported to solve MMDPs. In [16] the authors 
show that a network of independent LA is able to reach 
equilibrium strategies in Markov games with some ergodic 
assumptions. In [17], the authors extend this algorithm with 
the intermediate rewards to accelerate learning 
convergence. 

In the first part of this paper, we propose two new 
learning automata based multi agent system (MAS) 
algorithms. These algorithms consist of multiple agents that 
use learning automata in order to optimize their own 
behavior that can be effectively used to find the optimal 
policy in MMDPs. In the proposed algorithms, the 
environment of Markov problem is modeled as a directed 
graph. The nodes of this graph represent the states and 
directed edges between nodes represent the actions that 
result in transition from one state to another. Each node of 
the graph is equipped with a learning automaton. The 
actions of each learning automaton are the outgoing edges 
of corresponding node. The agents move on this graph and 
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in each state, they get help from corresponding learning 
automaton to choose a desirable action and move to the 
next state. Based on the path taken by agents and its 
goodness in terms of speed and cost, the probability 
vectors of learning automata will be updated. This process 
is performed in parallel by all agents, and it iterates several 
times until the path taken by each agent converges to the 
optimal path. The novelty of the algorithms are: 1) 
introducing a dynamic threshold to select the 
reward/penalty input to the learning automata, 2) 
maintaining a history of states visited (denoted as a path) to 
avoid cycles during each episode. 

 In the second part of this paper two more algorithms 
obtained by importing the concept of entropy [18, 19] into 
the algorithms given in the first part are proposed. Entropy 
is a significant concept in the thermodynamics, representing 
the degree of disorder in a thermodynamic system that is 
played an important role in various fields of computer 
science, such as coding theory, learning, compression, and 
others[18, 20] . The concept of entropy is used in order to 
drive the magnitude of the reinforcement signal given to the 
learning automata to enhance the performance of the multi-
agent system leading to an optimal policy in fully-
cooperative Markov Games. To evaluate the proposed 
methods, they have been applied to an example of MMDP 
called Grid Game. The results of computer simulations have 
shown that these algorithms outperform the previous 
learning automata based approaches from both cost and 
speed perspective. The rest of this paper is organized as 
follows: Section 2 is a brief review on different types of 
Learning Automata. Definitions for Markov Decision 
Process and Markov Games as well as the concept of 
solution in them are discussed in section 3. In section 4, the 
proposed algorithm and its variations are presented. In 
Section 5, simulation results and discussion are reported. 
Section 6 concludes the paper. 
 
2. Learning Automata 

Learning Automata are adaptive decision-making 
devices operating on unknown random environments[21]. 
The Learning Automaton has a finite set of actions and 
each action has a certain probability (unknown for the 
automaton) of getting rewarded by the environment of the 
automaton. The aim is to learn to choose the optimal action 
(i.e. the action with the highest probability of being 
rewarded) through repeated interaction on the system. If the 
learning algorithm is chosen properly, then the iterative 
process of interacting on the environment can be made to 
select the optimal action. Figure 1 illustrates how a 
stochastic automaton works in feedback connection with a 
random environment. Learning Automata can be classified 
into two main families: fixed structure learning automata 
and variable structure learning automata (VSLA). In the 
following, the variable structure learning automata is 
described. 

 
Fig 1.    Learning automaton and its interaction with the 
environment 
 

Variable structure learning automata can be shown by a 
quadruple { α , β, p, T } where α={α1, α2, ..., αr } which is the 
set of actions of the automaton, β={β1, β2,…, βm} is its set of 

inputs, p={p1, ..., pr} is probability vector for selection of 
each action, and p(n +1) = T[α (n), β(n), p(n)] is the learning 
algorithm.  We assume that action αi is selected at time-
step n. In case of desirable response from the environment: 
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In case of undesirable response from the environment: 
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In equation (1) and (2), a and b are reward and penalty 
parameters respectively. When a and b are equal, the 
algorithm is called linear reward-penalty (LR-P), when b is 
much smaller than a, the algorithm is linear reward--
penalty (LR-P) and when b is zero, the algorithm is called 
linear reward-inaction (LR-I). If β={0,1}, then the environment 
is called P-Model. If β belongs to a finite set with more than 
two values, between 0 and 1, the environment is called Q-
Model and if β is a continuous random variable in the range 
[0, 1] the environment is called S-Model. Let a VSLA 
operate in an S-Model environment. A general linear 
schema for updating action probabilities when action i is 
performed is given by: 
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where r is the number of possible actions, a and b are 
reward and penalty parameters, respectively. 

Learning Automaton has fixed number of actions; but in 
many applications, a Learning Automaton with variable 
number of actions is needed. In each instant n, this type of 
Learning Automaton selects its action only from a nonempty 
subset V(n) of its action set which is called the set of active 
actions. Choosing the set V(n) is done randomly by an 
external element. This is how a Learning Automaton with 
variable number of actions works: to select an action in 
instant n, the Learning Automaton first calculates the sum of 
probabilities of its active actions, K(n). Then, vector p(n) is 
calculated as mentioned in equation (4).  Afterward, the 
Learning Automaton selects an action αi from its active 
actions set based on p(n) and executes it. After receiving 
the environment’s response, the Learning Automaton will 
update p(n) . If the response is a reward, Learning 
Automaton will use equation (5) and if it is a punishment, it 
will use equation (6) to perform the update process. 
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In case of desirable response from the environment: 
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In case of undesirable response from the environment: 
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Then, p(n) will be updated using p(n +1): 
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 (7) 
Learning Automata Games: Automata games were 

introduced to see if automata could be interconnected in 
useful ways so as to exhibit group behavior that is attractive 
for either modeling or controlling complex system [22]. A 
play a(t) = (a1(t) . . . an(t)) of n automata is a set of 
strategies chosen by the automata at stage t, such that aj(t) 
is an element of the action set of the jth automaton. 
Correspondingly the outcome is now also a vector β(t) = 
(β1(t) . . . βn(t)). At every time-step, all automata update their 
probability distributions based on the responses of the 
environment. Each automaton participating in the game 
operates without information concerning the number of 
other participants, their strategies, actions or payoffs. In 
zero-sum games, the LR-I scheme converges to the 
equilibrium point if it exists in pure strategies, while the LR-
P scheme can arbitrarily close approach a mixed 
equilibrium [23]. In general non zero-sum games it is shown 
that when the automata use a LR-I scheme and the game is 
such that a unique pure equilibrium point exists, 
convergence is guaranteed [15]. In cases where the game 
matrix has more than one pure equilibrium, which 
equilibrium is found depends on the initial conditions.  

 
3. Markov Games 
 3.1.  Markov Decision Process 

The problem of controlling a finite Markov Chain, for 
which transition probabilities and rewards are unknown, 
called a Markov Decision Process [24] and can be stated as 
follows. Let s= {s1, s2,… sN } be  the state space of finite 
Markov chain {xn}n0, and A୧ ൌ ൛aଵ

୧ , aଶ
୧ , … , a୰౟

୧ ൟ	be the finite 
set of actions available in state si. Each starting state si, 
action choice ai  Ai, and ending state sj has an associated 
transition probability T୧୨൫a୧൯ and reward	R୧୨ሺa୧ሻ. The goal is 
to choice the set of action, or policy, α={a1, a2,…, an} with 
aj Aj that maximizes the expected average reward J(α). 
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where Rx(t)x(t+1)(α) is the reward generated by a transition 
from x(t) to x(t+1) using policy α. The set of policies is 
limited in this formulation to stationary, nonrandomized 
policies. Hence, under the assumption that the Markov 
chain corresponding to each policy is ergodic, there exists 
the best strategy in each state is a pure strategy and is 
independent of the time at which the state is occupied [15].  
 
3.2  Markov Game 

Markov games are a generalization of MDPs to multiple 
agents and can be used as a framework for investigating 
multi-agent learning [25]. In a Markov game, actions are the 
result of joint action selection of all agents, while rewards 
and the state transitions depend on these joint actions [4, 
6]. The action set available for agent k (1 kn) in state si 

is	A୩
୧ ൌ ቄa୩భ

୧ , a୩భ
୧ , … , a୩౟౨

୧ ቅ,	n being the total number of agents 

present in the system. Transition probabilities T୧୨൫a୧൯  and 

rewards R	୩
୧୨ሺaሻdepend on a starting state si, ending state sj 

and joint action from state si, i.e. ai= (aଵ
୧ , … , a୬୧ ) with	a୩

୧ 	A୩
୧ . 

The reward function	R୩
୧୨ሺaሻ for each agent k is individual. 

Different agents can receive different rewards for the same 
state transition.  Since each agent k has its own individual 
reward function, defining a solution concept becomes 
difficult.  

Markov games are categorized based on the agents' 
rewards into cooperative and non-cooperative games. Non-
cooperative games may be classified as competitive games 
and general-sum games. Strictly competitive games, or 
zero-sum games, are two-player games where one player’s 
reward is always the negative of the others’. General-sum 
games are ones where the reward sum is not restricted to 
zero or any constant, and allow the agents’ rewards to be 
arbitrarily related.  However, in full cooperative games, or 
team games, rewards are always positively related. In a 
fully cooperative MG (or team MG) called a multi-agent 
MDP (or MMDP), all agents share the same reward function 
and optimal policies exist. Optimal policy is defined as the 
joint agent policy, which maximizes the payoff of all agents. 
An MMDP can therefore also be seen as an extension of 
the single agent MDP to the multi-agent case [26]. 
 
3.3 Control of Markov Game Using Learning Automata 

The problem of controlling Single-Agent MDPs (and  
Markov Chains) can be modeled as a network of 
interconnected learning automata in which the control is 
transferred from one learning automaton to another [27]. 
Each state in MDP has a learning automaton that tries to 
learn the optimal probability distribution of actions during 
the process. Agents move on this network and in each 
state, they get help from the learning automaton assigned 
to that state to move to the next state. This is done by using 
the probability vector of the corresponding learning 
automaton. In this model, only one learning automaton is 
active at each time and the transition from one state to 
another will activate the learning automaton of that state. 
The activated learning automaton LAi in state i will not be 
informed about the immediate reward r୧୨൫a୧൯ yielded from its 
action ai in transition from state i to state j. Instead, when 
state i is visited again, LAi receives two parts of data: the 
cumulative reward from the beginning of the process up to 
the current time step and current global time. Using these 
data, LAi calculates the reward received since the last visit 
of state i and the corresponding elapsed global time. Then, 
the input to LAi is calculated using the following equation: 
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where i(ti+1) is the cumulative total reward generated for 
action ai in state i and i(ti+1) is the cumulative total elapsed 
time. This process continues until all probability vectors 
converge or a pre-specified condition is met. The authors in  
[27] denote updating scheme as given in Equation (3) with 
environment response as in (9) as learning scheme T1. The 
following results were proved. 
Lemma 1. The Markov chain control problem can be 
asymptotically approximated by an identical payoff game of 
N automata. 

Theorem 1. Let for each action state si of an N state 
Markov chain, an automaton LAi using learning scheme T1 
and having ri actions be associated with. Assume that the 
Markov Chain, corresponding to each policy α is ergodic. 
Then the decentralized adaptation of the LA is globally -
optimal with respect to the long-term expected reward per 
time step, i.e. J(α). 

 When the number of agents increase and the model 
extends to multi-agent case, more than one learning 
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automaton should be active simultaneously because the 
states depend on the problem and the environment and the 
agents could be in different states.  In a Markov game, 
actions are the joint action which is the result of joint action 
selection of all agents. The network of learning automata 
applied to MDP is  extended to Markov game by putting a 
learning automaton for each agent in each state instead of 
putting a  single learning automaton in each state of the 
system.[16]  At each time step only are the automata of one 
state active; a joint action triggers the LA from that state to 
become active and takes some joint action. As MDP, the 
activated LA, LA୩

୧ , for agent k in state i is not informed of the 
one-step reward, rij(ai) resulted from choosing a joint action 
ai = (aଵ

୧ , …,	a୬୧ ) with action a୩
୧ in state i and leading to state j. 

When state i is visited again, all learning automata LA୩
୧  

receive two pieces of data: the cumulative reward 
generated by the process up to the current time step and 
the current global time. The environment responses or the 
input to	LA୩

୧  is exactly the same as in Equation 3. 
 
4. The Proposed Algorithms  

In this section, several algorithms for learning automata 
based multi agent system (MAS) are proposed. The multi-
agent system is designed to find optimal policies in fully 
cooperative Markov Games. In the proposed algorithms, the 
multi-agent system as a fully cooperative MG problem is 
mapped on a directed graph. This mapping is done in such 
a way that the graph nodes indicate the states and directed 
edges represent actions of the fully cooperative MG 
resulting in transition from one state to another. For each 
state an S-model variable structure learning automaton is 
placed which tries to learn the optimal action probabilities in 
those states. The set of actions of this learning automaton 
is the set of permissible movements to other states. At first, 
all of the learning automata in all states choose their actions 
with equal probabilities. The agents start from “starting 
state” and move toward “goal state”. In each state, the 
agents move to the next state by the help of corresponding 
learning automaton and its action probability vector. Each 
agent continues moving on the graph until it reaches the 
goal state. After goal state is reached, the value of the 
traversed path πj taken by agent j, (Lπj), is computed 

based on the length of the traversed path j divided by the 
reward of reaching the goal state, (RG), and then compared 
with a quantity called dynamic threshold, Tj. Depending on 
the result of the comparison all the learning automata along 
the traversed path update their action probabilities. 
Updating is done in direction from starting state to goal 
state or vice versa. If the value of the traversed path is less 
than or equal to the dynamic threshold then all learning 
automata along that path receive reward and if length of the 
traversed path is greater than the dynamic threshold then 
activated automata receive penalty. This process stops if 
the path probability is greater than a certain threshold or a 
pre-specified numbers of paths (episodes) traversed. The 
path probability is defined as the product of the probability 
of choosing actions of learning automata in the states of the 
traversed path.  Assume that the path πj for agent j is 
traversed m times. Thus the dynamic threshold for agent j 
defined as the average value of traversed paths from start 
state to goal state can be updated according to equation 
(10). The proposed algorithm which we call it Algorithm 1 is 
given in more detail in Figure 2. 
(10)  Tj=Tj+(Lπj-Tj)/m 

 

Algorithm 1 suffers from the possibility of existence of 
cycles in the paths taken by agents. This possibility 
increases with increase in learning rate or reward. Algorithm 

2 is obtained by addressing this problem. In Algorithm 2, it 
is assumed that in each state i of the environment of the 
game and for each agent k, k: 1..n, a learning automaton 
௞ܣܮ

௜  is placed. ܣܮ௞
௜  in state i tries to learn the optimal action 

probability of agent k. The number of adjacent states 
(neighbors) determines the number of actions of each 
learning automaton in each state. When the agent j arrives 
at state s, the learning automaton corresponding to this 
agent in the state is activated and agent j gets help from 
this learning automaton to find the next state to move on. 
By selecting action am in state s and transition to new state 
m, the action selection process is performed as follows: 
actions that result in transition to states which have been 
previously visited in agent j's path are deactivated and then 
another action from active actions set based on probability 
vector will be chosen. In case that the set of active actions 
is empty and therefore no action can be chosen, all actions 
will be reactivated to become available for selection by the 
agents. In Algorithm 2, the model of learning automata with 
the variable number of actions is used and the update 
scheme is based on Equations 4-7.  Algorithm 2 in more 
details is shown in Figure 3. 

 

Improving the proposed algorithms using the Concept 
of Entropy  
 In this section we first briefly talk about the concept of 
entropy and then introduce two new algorithms called 
Algorithm 3 and Algorithm 4 which are obtained by 
importing the concept of entropy into the Algorithms 1 and 
2. Entropy which represents the degree of disorder in a 
thermodynamic system plays an important role in various 
fields of computer science [18,19]. Shannon has introduced 
this concept into the information theory, by the name of 
"information entropy". Entropy, in basic, indicates a 
measure of uncertainty rather than a measure of 
information. More specifically, the information entropy is a 
case of the entropy of random variables defined as follows 
[28,29]: 
 

ሺܺሻܪ  (11) ൌ െ∑ ܲሺݔሻlog	ሺܲሺݔሻ௫∈ఞ ሻ 
 

where X represents a random variable with set of values  
and probability mass function P(x). Entropy is always a 
positive value and can change bases freely as Hb(X) = 
logb(a).Ha(X). Entropy measures the uncertainty inherent in 
the distribution of a random variable.  

Algorithm 3 and Algorithm 4 which will be described in 
this section are improvements over Algorithm 1 and 
Algorithm 2 and obtained by importing the concept of 
entropy into them. The concept of entropy is used to help 
the learning automata along the paths traversed by the 
agent for improving the process of learning and also faster 
convergence. For this purpose, when LAs in state s selects 
action m, and goes to new state s' (except goal state), the 
LAs is rewarded using the entropy of the actions probability 
vector for the learning automata of the new state. Entropy of 
the action probability vector measures the degree of 
uncertainty that the next state of learning automaton 
encounters. High value of entropy indicates that the 
learning automaton has no information about where the 
goal state is and chooses its action randomly (Exploration). 
On the contrary, the low value of entropy indicates that the 
learning automaton has useful information about the goal 
state and, therefore, chooses its actions with higher 
probability (Exploitation). If ܲሺݏሻ ൌ ሼ݌ଵ

௦, ଶ݌
௦, … ,  ௥௦ሽ is the݌

action probability vector of a learning automaton with r 
actions in state s, then the entropy the probability vector for 
state s is computed as:  
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ሻݏሺܪ  (12) ൌ െ∑ ௝݌
௦log	ሺ௥

௝ୀଵ ௝݌
௦ሻ 

 

where		 ௝ܲ
௦	denotes the action probability vector of the 

learning automaton in state s.  
Entropy is maximized when all the actions have equal 

probabilities of selection and is minimized (zero value) 
when the action probability vector is a unit vector. In order 
to be able to use entropy as a reinforcement signal for S-
Model variable structure learning automata, the entropy  
needs to be rescaled in the range of [0,1]. Suppose that 

agent i is in state s and its learning automaton (LAs) leads 
the agent to move to state s'. In this case, reinforcement 
signal ߚ௜

௦	is determined using: 
 

௜ߚ      (13)
௦ ൌ  ᇱሻሻݏሺܪሺݔܽܯ/ᇱሻݏሺܪ

 

where Max (H(s')) is the maximum entropy in state s' and is 
defined as:  
 
(14)  Maxሺܪሺݏᇱሻሻ ൌ െ∑ ሺ1 ⁄ݎ ሻ௥

௝ୀଵ logሺ1 ⁄ݎ ሻ ൌ logଶ  ݎ

 

Fig 2.  Algorithm 1  
 
5. Simulation Results and Discussion 
In order to evaluate the performance of the proposed 
methods, several experiments have been conducted. The 
environment of experiment is a Grid-world game that 
includes a 33 grid with a goal cell. Two agents start from 
the two bottom corners (location 1 and 3) and try, with the 
least possible number of moves, to find the goal square, 
which is the top center. After observing the current state, 
agents choose their actions simultaneously. They then 
observe the new location, both agents’ rewards, and the 
action taken by the other agent. In the new location, agents 
repeat the process above. When at least one agent moves 
into its goal position, the game restarts. In the new 
episode, each agent is randomly assigned a new position 
(except its goal cell). This environment has also been used 
previously in [5,8]. To convert the problem to an MMDP, we 
consider each cell as a state and the allowable transitions 
to adjacent cells as actions. In this MMDP the objective is 
that both agents reach the goal state using distinct paths. If 

both agents try to move to the same cell, both of their 
moves will fail and both receive 0.01 units of punishment 
and stay in their previous position. If agents move to two 
different non-goal cells, both receive zero rewards and if 
one reaches the goal position, it receives 1 units of reward. 
The reward function for each agent i is based on Equation 
15, i=1, 2. 
 

(15)   
statenongoalsamethereachedagentsbothif

stategoalnondifferentareachedagentsif

stategoalthereachediagentif

tri









0

01.0

1
 

 

 

 

ALGORITHM 1 

  Create one learning automaton for each state s and define the set of actions of the learning automaton in state s to be the set of   
permissible movements from state s to other states. Initially, for a learning automaton the probability of selection of an action is  set to 
1/number of permissible actions; 

   Place all agents in  starting state;  

   for every agent j do 

        set  threshold Tj  to zero  

        set  kj to zero //  the number of the path traversed by agent j from starting state to goal state 

  end for 

  for every agent  j do in parallel 

            Repeat 

                      Activate learning automaton 	LAs corresponding to state s in which the agent j is residing and determine the                  

                                                                                                                               next state m to which the agent moves. 

                               // This is done based on the probability vector of the learning automaton, by selecting an  

                                   action am corresponding to  directed edge (s, m) of the graph which means  transition from  

                                  state s to next state, m// 

Move Agent j to state m;  

if there is more than one agent in state m then  Move agent j to state s  //collision detect  
  else 

sm; Add s to πj  
 

if state s is the goal state then  

   Compute the value of path j taken by agent j, Lj(j), to be tj(j) /RG      

                      //RG is the reward of reaching the goal state, tj(j) is the length of the traversed path j //  
     if Lj(j) <Tj  then 

        Give reward to all the actions taken by learning automata  along the traversed path j according to the  learning      

                                                                                                                     algorithm with (k) = Lj(j) 

       else  

       Give penalty to all the actions taken by learning automata along the traversed path j  according to the learning     

                                                                                                                algorithm with  (k) = 1- Lj (j) ; 

     end if 

    Tj = Tj + (Lj(j)- Tj )/ kj;            // Tj is the average value of traversed path// 

     kj=kj+1  

end if 

end if  

                  until ( the probability of  path j  taken by agent  j exceeds a pre-specified threshold or a fixed number of iterations are     
                                                                                                                                                                                           passed) 
          end for 
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  Fig3.  Algorithm 2 

 
 
 
 
A path in this game represents a sequence of actions 

from the start to the goal position. In game terminology, 
such path is called a policy or strategy. The shortest path 
not interfering the path taken by the other agent is called 
the optimal path or Nash path. Figure 5 illustrates the 
optimal solution for Grid-world Game. In the rest of this 
section the results of experiments designed to show the 
effectiveness of the proposed algorithms will be presented.  

 
 

 
 

    LA7 Goal LA8 

 

LA4 LA5 LA6 

 
   LA1 LA2 LA3 

 
Fig 4. Grid-world game and learning automata model  

 

ALGORITHM 2  

   Create one learning automaton for each agent in each state and define the set of actions of the learning automaton in 
state s to be the set of permissible movements from state s to other states. Initially,  for a learning automaton the 
probability of selection  of an action is set to 1/number of permissible actions; 
   Activate the actions of all learning automata for each agent;
   Place all agents in  starting state; 
   for every agent  j do 
        set  threshold Tj  to zero  
        set  kj to zero //  the number of the path traversed by agent  j from starting state to goal state 
   end for 
Repeat 
    s=StartState 
  While s  is not the goal state  or a certain  number of moves are made by the agent Do 

         Joint-action=   
         for every agent  j do  

                    Activate learning automaton	ܣܮ௝
௦    

                    if the active action set of ܣܮ௝
௦  is not empty then   

                 Action=Select an active action ௝ܽ
௦ 

               else                             // the active action set is empty// 
                   Reactivate all inactive actions for agent j in state s 
               end if 

                    Joint-action = Joint-action  Action 
         end for 
       NewState= GetNextState(s, Joint-action) 
     for every agent  j do  

             Move Agent j to NewState; 

             Deactivate action ௝ܽ
௦

 in Action set for LA in the current state 

             if   NewState  is the goal state then  

  Compute the value of path j taken by agent j,  Lj (j), to be tj(j) /RG      

                                       //RG is the reward of reaching the goal state, tj(j) is the length of the traversed path j  
     if Lj(j) <Tj  then 

       Give reward to all the actions taken by learning automata  along the traversed path j  according to the   

                                                                                                                  learning algorithm with (j) = Lj(j) 
      else  

       Give penalty to all the actions taken by learning automata along the traversed path j  according to the  

                                                                                                               learning algorithm with  (j) = 1- Lj (j)         
     end if 

   Tj = Tj + (Lj(j)- Tj )/ kj        // Tj is the average value of traversed path  // 
              end if 
             kj=kj+1; 
          end for 
         s =NewState 
    end while 

A,B
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Fig 5. Optimal solutions for Grid-world Game 
 
Experiment 1: This experiment is conducted to study the 
impact of learning parameter a of LR-I learning algorithm on 
the convergence of learning automata in Algorithm 1. For 
this purpose, the probability of choosing action "up" by the 
agent in starting cell when the learning rate takes different 
values: 0.01, 0.05, 0.1 and 0.4 has been observed. Figure 6 
shows the results of this experiment. From the result it is 
evident that the choice of value for parameter a has a large 
effect on the performance of the proposed algorithm. In this 
experiment the best result is obtained when a is set to 0.01. 
For values of a greater than 0.05 convergence rate 
deteriorates.  

 
Fig 6. Probability of action "up" in starting cell of agent 1 in 
Algorithm 1 for different learning rates. 
 

 

Fig 7.  The impact of learning rate on the reward received by agent 
1  
 
Experiment 2: This experiment is conducted to study the 
impact of learning parameter a of LR-I learning algorithm on 
the amount of reward received by agent 1 during an 
episode in Algorithm 1. For this purpose, we plot the reward 
received by agent 1 per episode for different values of 
learning parameter a: 0.01, 0.05, 0.1 and 0.4. Each value 
reported in this experiment is obtained by averaging over 
100 runs. We assume that at the beginning of an episode, 
each agent starts from starting cell. Figure 7 illustrates the 
results of this experiment. The result illustrates clearly that 

choice of value for parameter a has a large effect on the 
performance of the proposed algorithm. The results indicate 
that higher value for parameter a leads to speeding up the 
convergence to the goal state. For values of a greater than 
0.4 convergence rate deteriorates.  
 
Experiment 3: This experiment is conducted to study the 
impact of learning parameter a of LR-I learning algorithm on 
the number of agent collisions during an episode in 
Algorithm 1. For this purpose, we plot the number of 
collisions between agents per episode for different values of 
learning parameter a: 0.01, 0.05, 0.1 and 0.4. We assume 
that at the beginning of an episode, each agent starts from 
starting cell. Each value reported in this experiment is 
obtained by averaging over 100 runs. Figure 8 summarizes 
the results of this experiment and shows that higher value 
for parameter a up to certain value (value 0.4 for this 
experiment) results in lower number of collisions.  

 
Fig. 8.  The impact of learning rate on the number of agent 
collisions during an episode  
 
Experiment 4:  In this experiment, we study the impact of 
learning parameter a of LR-I learning algorithm on the 
probability of optimal path in Algorithm 1. The probability of 
optimal path is defined as the product of probabilities of the 
selection of the edges along the optimal path. The plots of 
average probability of optimal path over the converged runs 
out of 100 runs are given in Figure 9. For example, It can be 
seen that in terms of accuracy the best result is obtained 
when a= 0.01. Increasing the value of a increases the 
speed of convergence in the expense of accuracy. 

 
Fig. 9.    Probability of optimal path for agent 1 for Algorithm 1 for 
different learning rate 
 

Experiment 5: In this experiment we compare Algorithm 1 
with Algorithm 2 in terms of the reward received by agent 1 
and the number of agent collisions made during an episode. 
Learning parameter a for both algorithms is set to 0.01. 
Each value reported is the average over 100 runs. It is 
assumed that at the beginning of an episode, each agent 
starts from starting cell. Figure 10 shows the result of this 
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experiment. As it is seen Algorithm 1 outperforms Algorithm 
2 in terms of both the number of agent collisions and the 
average reward received during an episode.   

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Comparison of Algorithms 1-2 in terms of average reward 
received and the number of agent collisions  
 

 

 

Fig. 11.    Comparison of the Algorithms 2 - 4  
 
Experiment 6: This experiment is conducted to study the 
improvement obtained by importing entropy into Algorithms 
1 and 2. To do this, we compare Algorithm 1 with Algorithm 
3 and Algorithm 2 with Algorithm 4 in terms of the reward 
received by agent 1 per episode and the number of 
collusions when applied to Grid-world game. The learning 
parameter a: is set to 0.01. From the results given in figure 
11 we can say that using importing in both algorithms leads 
to higher accuracy and also higher rate of convergence.   
 

Experiment 7: In this experiment we compare Algorithm 1 
with Algorithm 3 and Algorithm 2 with Algorithm 4 with 
respect to optimal path probability. The learning parameter 
a is set to 0.01. Figure 11 shows the result of this 
experiment. As it is seen Algorithm 3 and Algorithm 4 in 
which we use entropy outperform their counterparts 
Algorithm 1 and Algorithm 2.  Figure 12 show that the 
optimal path probability for both algorithms 3 and 4 
approaching more quickly to its final value.  

 
Fig.12.  Comparison of the Algorithms 1 with Algorithms 3 and 
Algorithms 2 with Algorithms 4  with respect to optimal path 
probability 
 

Experiment 8: In this experiment we compare the proposed 
algorithms with one of the existing learning automata based 
algorithm called interconnected learning automata (ILA) on 
the same problem [5].  Similar to the proposed algorithms, 
in ILA algorithm each cell is equipped with a learning 
automaton whose actions correspond to possible 
movements to adjacent cells. Learning parameter a for the 
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proposed algorithms and ILA algorithm is set to 0.01. Table 
1 gives the number of iterations required by each algorithm 
in order the probability of optimal path exceeds 0.97.   As it 
is shown all the proposed algorithms require fewer numbers 
of iterations in comparison to ILA algorithm. Among the 
proposed algorithms, Algorithm 3 performs the best.  Figure 
13 shows the results of comparing Algorithm 3, Algorithm 4 
and algorithm ILA in terms of the probability of optimal path 
and the amount of reward received per episode by agent 1. 
It is evident that both Algorithm 3 and Algorithm 4 
outperform ILA algorithm.  

Table 1: Maximum number of iterations for the first agent to reach 
the optimal path 

Maximum Iterations 
a=0.01 

Used Algorithm 

1600 Algorithm 1 

1700 Algorithm 2 
1000 Algorithm 3 
1200 Algorithm 4 

2800 ILA algorithm [5] 

 

Fig. 13.    Comparison of the Algorithms 3 and 4 with ILA  
 

Experiment 9: In this experiment, we investigate the 
performance of the proposed algorithms and ILA algorithm 
when applied to a stochastic version of Grid-world game. In 
Grid-world game state transitions are deterministic, which 
means the current state and agent's joint action will 
uniquely determine the next state. In the stochastic version 
of Grid-world game which we have considered for this 
experiment all transitions are deterministic except those 
from the starting states (locations 1 and 3) to other states.  
An agent in its starting state moves up with probability 0.5 
and remains in starting state with probability 0.5. This 
example is borrowed from [5]. Figure 14 illustrates the 
optimal solutions for stochastic version of Grid-world Game. 
In this experiment, the optimal path probability and the 
reward received by agent 1 per episode have been 
observed. Experimentations have shown that all five 
algorithms perform best when learning parameter a is set to 
0.01 and for this reason in this experimentation a is chosen 
to be 0.01 for all algorithms. Figure 15 shows the result of 
this experiment. As it is seen Algorithm 3 outperforms all 

the other algorithms. Notice that algorithm ILA performs the 
worst. 

 

Fig. 14. Optimal solutions (Nash Path) for stochastic version of 
Grid-world Game 

 
Fig. 15.  Comparison of the proposed Algorithms and ILA  

 

6. Conclusion 
In this paper several learning automata based multi agent 

system (MAS) algorithms for finding optimal policy in fully 
cooperative Markov Games were proposed. In the 
proposed algorithms, the environment of Markov problem is 
modeled as a directed graph. The nodes of this graph 
represent the states and directed edges between nodes 
represent the actions that result in transition from one state 
to another. Each node of the graph is equipped with a 
learning automaton whose actions are the outgoing edges 
of the corresponding node. The agents move on this graph 
and in each state, they get help from corresponding 
learning automaton to move to the next state. The proposed 
multi-agent systems were evaluated by applying them to an 
example of a MMDP called Grid Game. Simulation results 
showed that the choice of the learning rate has a great 
impact on the performance of all the proposed algorithms. 
The concept of entropy was also used to enhance the 
performance of the proposed multi-agent systems. The 
results of experimentations showed that the proposed multi-
agent systems outperform the previous learning automata 
based multi agent system in terms of cost and speed of 
convergence. In the proposed algorithms there are 
limitations, such as requiring that the problem involves 
reaching a goal state.  
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