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Abstract  In this paper two-dimensional dielectrophoresis is described. First electric field distribution in particle and surrounding fluid is calculated 
and next stresses acting from both sides suspension-particle boundary are calculated. These values are fundamental for force calculation in two-
dimensional dielectrophoresis and in simulation velocity distribution in interdigitated electrodes. 
 
Streszczenie. W tej publikacji omówiono zjawisko dielektroforezy w dwóch wymiarach. Najpierw odpowiednie równania pola zostaną analitycznie 
rozwiązane, a następnie zostaną wyprowadzone wzory na wartość tensora naprężeń Maxwella działającego na obie strony cząsteczki. Wielkości te 
mają podstawowe znaczenie w obliczaniu sił i momentów działających na cząsteczkę oraz na wyznaczanie rozkładu prędkości w urządzeniach do 
separacji cząstek.(Porównanie różnych metod obliczania sił w DC dielektroforezie) 
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Introduction 
 In comparison to electrophoresis, by which we under-
stand particle motion due to the force resulting from cou-
pling between an applied external electric field and a charge 
particle, dielectrophoresis has the disadvantage that the 
polarization forces acting on polarized particle are quite 
weak. In general, efficient particle manipulation in microe-
lectrode arrangement requires taken into account other 
factors, such as viscous, buoyancy, and electrohydrody-
namic forces. This constitutes complicated system of math-
ematically coupled different physical fields, which results in 
mutually coupled system partial differential equations. From 
practical point of view only numerical methods can give 
from practical point of view satisfactory results. Based on 
the measurement of electric and dielectric properties, a 
further study of selective segregation and purposeful ma-
nipulation of micro- or nanostructures of living organisms 
can be achieved.  

The phenomenon of dielectrophoresis (DEP) was first 
defined by Pohl [1] as the motion of neutral but polarizable 
particles subjected to nonuniform electric fields. DEP pro-
vides an increased measurement precision and sensitivity 
in the detection of cells with different dielectric properties, 
without any need for labeling them. Two different methods 
electric force computation in dielectrophoresis is presented. 
The first is based on equivalent dipole method, which is 
easy to use, but in some situations not accurate [2, 3]. The 
second one is based on Maxwell stress tensor and gives in 
all possible situations accurate results, but is much more 
cumbersome in implementation.  
 All materials from electrical point of view is composed of 
positive and negative charges which experience an electro-
static force when is placed in an electric field. In a uniform 
electric field, electrically neutral particles experience a die-
lectric polarization, but no net force. In a nonuniform electric 
field, however, forces acting on polarized charges are not 
balanced, and a motion called dielectrophoresis (DEP) 
occurs. There are actually two types of dielectrophoresis 
involving particles suspended in a medium: positive DEP – 
where the particles move toward the region of stronger 
electric field, and negative DEP – where the fluid surround-
ing the particles experience a stronger attractive force than 
the particles, which causes the suspended particles to be 
pushed toward the area of weaker electric field 
 There are many reasons for studying a behavior of 
particles and fluid globules immersed fluid suspension and 
placed in electric fields. Among different the chemical engi-

neering applications [2] are the determination of forces 
acting on droplets exiting electrospray nozzles, the en-
hancement of heat and mass transfer in emulsions by the 
imposition of electric fields [3], electrically driven separation 
of particles techniques [4], dielectrophoretic and electrorota-
tional manipulation of living and death cells [5], and the 
control of electrorheological fluids [6]. 
 Despite this growing importance of dielectrophoresis is, 
little attention has been paid to the theoretical and analysis. 
Although dielectrophoresis is only possible in strong diver-
gent electric fields, theoretical analyses are usually based 
on equations derived from uniform field behavior. The cal-
culation of DEP force acting on particle has been reported 
as a difficult task unless in many cases simplifying assump-
tions and very simple geometries are considered [8] and is 
usually based on the dipole approximation first introduced 
by Pohl [1]  
 The Finite Element Method (FEM) is useful method for 
analyzing electromagnetic fields in devices, because these 
can model complicated geometries and non-linear electric 
properties with relatively short computing time. In spite of 
these advantages, in many papers have been proved that 
obtaining an accurate force or torque from FEM computa-
tion can be inaccurate, particularly when geometry is 
enough complex, such as in the case of dielectrophoretic 
traps with multiple particles. Unfortunately, force and torque 
calculations are influenced by the approximate nature of the 
discretisation used in FEM meshes. In the Maxwell’s stress 
method of calculating the force and torque the stress distri-
bution occurs from meshes used for field solution. 
 In the Maxwell’s Stress Tensor (MST) method, it is sug-
gested that the total force acting can be calculated by sur-
rounding a given object by closed surface around the field 
sources and integrating the MST over the whole surface. 
The use of the standard Maxwell stress approach requires 
that the integration path or surface should be fully closed, 
and situated entirely in linear material. 
 In this publication Maxwell’s stress method is used to 
evaluation of force acting on both sides of dielectric particle 
immersed in dielectric fluid. Comparative study of computa-
tional inaccuracies is considered. 
 
Equivalent dipole method 
 The simulated chamber is modeled as a two-
dimensional model, where we need to consider only a sin-
gle pair of electrodes, one with positive Uz = 10 V and one 
with zero voltage. The extension of the interdigitated elec-
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trode array beyond the considered region can be simulated 
by applying periodic boundary conditions to the left and 
right of the problem boundary model. Fig. 1 shows a cross-
sectional geometry, which includes the substrate and chan-
nel covers, the interdigitated electrodes, and a fluid. 
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Fig. 1. Computational domain together with geometrical dimen-
sions. 
 
 Let us assume that two dimensional cylinder with per-
mittivity ε2 is immersed in external medium with permittivity 
ε1. Moreover in the region number one exists uniform elec-
tric field with electric field strength E0 directed perpendicular 
to z axis and extending from minus to plus infinity. Let V1 
denotes potential in surrounded dielectric with permittivity ε1 
and V2 in the cylinder. Potential outside the cylinder, when 
r ∞, can be calculated along r axis as 
 

(1) 1 0 0( , ) cos cosV r d E dr E r        E r   

 
The Laplace equation in polar coordinates is given by 
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If the geometry does not depend on z, we can choose a 
solution that is a product of functions which only depend on 
the radius r and angle  
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what when introduced in (2) gives 
 

(4) 
 

 
 

 2

2

1
0

dR r dr d
r

R r dr dr d

 
  

 
  

 
  

 
This equation can be solved by variable separation method 
giving as a result  
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where V1(r, ) and V2(r, ) are potentials in surrounding 
dielectric and in particle, respectively. Potential generated 
by dielectric cylinder is equal V1(r,) minus exciting field 
 

(7)  
2

0 2 1
1diel 0

2 1

, cos
r

V r E
r

 
 

 





  

 
The above equation describes potential distribution gener-
ated by single dipole, so dielectric cylinder in external uni-
form field one can replace by equivalent dipole with electric 
moment value 
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The force acting on two-dimensional dipole has the same 
form as for three-dimensional one. The force acting on two-
dimensional dipole is thus given by 
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This is the force density which falls on one unit length in z 
direction. Expression of the E2 is function of potential V 
and its derivative 
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so after some manipulations we have 
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In end effect the components of the force acting on particle 
have the values: 
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where constant C is given by 
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Maxwell stress tensor method 
 Let us now derive close form of surface force density f 
acting on unit area when unit normal vector to the surface is 
given. Maxwell stress tensor Tij for electric field is given by 
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The surface force density t is given by 
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In the above equations indexes i, j, k = 1, 2, 3 replace, for 
convenience, coordinates x, y and z. Because 
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The expression in parenthesis is equal to the scalar product 
E and n, thus the surface force density has value 
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One needs to calculate force densities on both sides of the 
particle-suspension boundary. Let us assume that suspen-
sion has number 1 and particle as number 2. Then equation 
(19) gives us for both sides of the boundary: 
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The force is obtained by calculating surface integral around 
surface charge density induced in the particle by external 
field. It is assumed that there are not volume induced 
charges inside particle. Apparently unit normal vectors on 
both sides of the particle-suspension boundary have oppo-
site sign, so because n1n and n2−n we have 
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Now, both vectors E1 and E2 can be resolved into two com-
ponents: perpendicular and tangential to the boundary. 
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where n is a normal and t tangential vectors to the bounda-
ry. Boundary conditions on both side the boundary have 
following form 
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This allows us to eliminate components of electric field in 
suspension. In this case E1n. 
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and total force acting on particle and described by the field 
obtained in particle and calculated on particle-suspension 
boundary is given by 
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This is the force acting on particle, where under integration 
sign field in particle is taken into account. This equation one 
can apply both in two-and three-dimensional problems. 
 Let us now eliminate in (22) not field in suspension with 
index 1 but instead field in particle with number 2. The force 
is obtained by calculating surface integral around surface 
charge density induced in the particle by external field. The 
boundary condition gives 
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This allows us to eliminate components of electric field in 
suspension. In this case E2n. After some manipulation we 
have finally 
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and total force acting on particle described by field calculat-
ed in suspension and evaluated on suspension-particle 
boundary is given by 
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According with Newton’s third law both forces F(1) and F(2) 
should be equal.  
 
Illustrative example 
The simulated chamber is modeled as a two-dimensional 
model, where we need to consider only a single pair of 
electrodes, one with positive Uz = 10 V and one with zero 
voltage. The extension of the interdigitated electrode array 
beyond the considered region can be simulated by applying 
periodic boundary conditions to the left and right of the 
problem boundary model. Figure 2 shows a cross-sectional 
geometry, which includes the substrate and channel covers, 
the interdigitated electrodes and a fluid. 
The finite element calculations was done for following geo-
metrical dimensions: A-B = 60 μm, A-C = 160 μm, a = 40 
μm, b = 40 μm, h = 4 μm. Cylindrical dielectric particle has 
radius r1  = 3 μm and relative permittivity ε2 = 50. The fluid, 
where particle moves, has permittivity ε1 = 5. 
Computed electric field distribution is shown in Fig.2. Both 
x-component and y-component are given in logarithmic 
scale. The force acting on dielectric particle is not propor-
tional to modulus of electric field, but instead to gradient of 
this field. 
 

 
Fig. 2. Electric field strength E in computational domain. The length 
of the vectors are in logarithmic scale 
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Fig. 3. Electric field strength on both sides of suspension-particle 
boundary 
 

 
Fig. 4. Electric stress acting on suspension throughout particle on 
suspension-particle boundary 
 
In Figure 3 electric field strength on both sides of the sus-
pension-particle boundary is given. These values directly 
are used in equations for Maxwell stress tensor, which acts 
on both sides of the boundary. 
In Figure 4. Electric stress acting on suspension throughout 
particle on suspension-particle boundary is presented. Fig-
ure 5 shows electric stress x-component acting on suspen-
sion throughout particle on suspension-particle boundary. 
The total force acting on particle computed from (26) formu-
la has value  
 

(30) (2) 1.114 3.460   [μN]x y F a a   

 
and from equation (29) 
 

(31) (1) 1.157 3.483   [μN]x y F a a   

 
Force calculating from equivalent dipole method is given by 
 

(32) 1.120 3.288   [μN]d x y f a a   

For particle radius r1  = 5 μm this forces have following 
values: 
 

(33) (2) 3.496 10.242   [μN]x y F a a   

 

(34) (1) 3.535 10.410   [μN]x y F a a   

(35) 3.113 9.135   [μN]d x y f a a   
 

 
Fig. 5. Electric stress x-component acting on suspension through-
out particle on suspension-particle boundary 
 
Conclusions 
In this article, cylindrical particle in uniform electric field 
perpendicular to the particle was considered. One can see 
that differences in calculation of forces acting on dielectric 
particle immersed in dielectric fluid a comparable. The error 
is not greater than 5%. Maxwell stress method can be ap-
plied to particles of any shape but equivalent dipole method 
only for cylindrical or spherical particles. For grater values 
of particle radius the difference between stress calculated 
on Maxwell stress tensor method and equivalent dipole 
method is greater. This is caused by the fact that bigger 
particle disturbs the field in greater degree. 
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