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Abstract. The Learnable Ant Colony Optimization (LACO) is proposed to satellite ground station system scheduling problems. The LACO employs 
an integrated modelling idea which combines the ant colony model with the knowledge model. In order to improve the performance, LACO largely 
pursues the complementary advantages of ant colony model and knowledge model. Experimental results suggest that LACO is a feasible and 
effective approach for the satellite ground station system scheduling problem.  
 
Streszczenie. Zaproponowanie wykorzystanie algorytmu LACO (Learnable Ant Colony Optimization) do rozwiązywania problemu planowania 
działań naziemnej stacji satelitarnej.  (Uczący się algorytm mrówkowy do rozwiązywania problemu planowania działań naziemnej stacji 
satelitarnej) 
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Introduction 

The satellite ground station system scheduling problem 
is a resource optimization problem based on constraints 
(namely allocating ground stations and operation time for 
tasks). Its optimization goal can be described as: to 
complete the most tasks or to maximize the weight 
summation of tasks in given time (when the weighted tasks 
are considered). The difficulties of this problem can be 
summarized as: for a particular activity (task), the resource 
(ground station) remains available only for one or several 
time windows, and the planning process includes both the 
resource dispatching and the allocation of time windows. 

The scholars usually adopted the artificial intelligence 
method to solve the satellite ground station system 
scheduling problem, such as the greedy algorithm [1], 
dynamic programming [2], heuristic search method [3], as 
well as constraint satisfaction method [4], etc. It is still a 
severe challenge facing us that how to solve the proposed 
problem more rapidly and effectively. For this purpose, the 
learnable ant colony optimization is proposed to satellite 
ground station system scheduling problems. The LCAO 
integrates Ant Colony Optimization (ACO) [5] with Guided 
Local Search (GLS) [6-8] to solve this problem.  
 
Problem formulations 

With the constraint of time window, this proposed 
problem takes into consideration both the weight of tasks 
and aerial conversion time, maximizes the weight 
summation of completed tasks, and then accomplishes the 
mission planning of multiple ground station system. 

 There are m time windows on the ground 

stations 1 2{ , ,..., }mW w w w , the starting time and 

ending time of time window iw  are iS  and iE  

respectively. 
 There are n tasks 1 2{ , ,..., }nA a a a that need to be 

completed, the required time and the weight of each 
task are respectively 1 2{ , ,..., }nD d d d  and 

1 2{ , ,..., }nP p p p , the starting time and ending time 

of task i are is and ie respectively. 

 As to the decision variable 1 2{ , ,..., }nT t t t , if 

task i can be completed, then 1it  ; otherwise, 0it  . 

 There are totally l aerials on the ground stations, and 
the aerial conversion time (the adjustment time for 

aerials before the implementation of tasks) 
is 1 2{ , ,..., }lR r r r . 

 The starting time of scheduling is sT , the closing time 

of scheduling is eT . 

The model of the mission planning of satellite ground 
station system can be illustrated as follows, 
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The constraint conditions include: 
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The constraint (2) implies the sum of duration time of 

task completion and aerial conversion time cannot exceed 
the length of the time window, in which iA indicates the set 

of arranged tasks in the thi time window, ir means the 

needed aerial conversion time at the completion of tasks in 
the thi time window. The constraint (3) signifies that if 

task ja is performed in the time window iw , then the starting 

time of tasks must be after the starting time of 
corresponding time window. The constraint (4) means if 

task ja is performed in time window iw , then the ending time 

of tasks must be before the ending time of corresponding 
time window. Constraints (3) and (4) ensure that tasks have 
to be accomplished in the selected time window. The 
constraint (5) implies the starting and ending time of all 
tasks should be among the selected time period [ ,  ]s eT T . 

 
Learnable ant colony optimization 

In the ant colony optimization, the artificial ant gradually 
constructs a feasible solution based on the state transition 
rules, and then introducing randomness into optimized 
results. Consequently, it is difficult to rapidly obtain the 
global optimal solution unless employing the local search to 
assist the ACO. Literature [9] integrates ACO with local 
search, which has been successfully adapted in 
combinational optimization problems. 
A. Basic Framework 
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The LACO integrates ant colony model with knowledge 
model: the ant colony model searches the feasible domain 
according to the neighbour searching strategy, while the 
knowledge model discovers the knowledge from the 
previous iterations, and then guide the subsequent 
iterations of ant colony optimization using the knowledge. 
The basic framework of LACO is displayed as Fig. 1. 

 

 
Fig. 1 The basic framework of LACO 
 
B. Optimization Flow 

The optimization flow of LACO is displayed as Fig. 2. 

 
Fig. 2 The optimization flow of LACO 

 
C. Initialization of Knowledge 

1) Elite individual knowledge.  After each iterative, LACO 
will select some elite individuals from the current population, 
and insert them into the elite individual set. In this paper, all 
individuals in the elite individual set are called as elite 
individual knowledge. The elite individual knowledge can be 
summarized as follows,  

1 2, , , numEL EL EL    

where   i i iEL X f X denotes the thi elite 

individual,  if X denotes the fitness of 

individual iX , num denotes the number of elite individuals. 

In the elite individual set, all the individuals are sorted with 
the depressed fitness order. The application mode of elite 
individual knowledge can be summarized as: keep the elite 
individuals, and modify the current individual based on elite 

individuals, that is, take the elite individual as the template, 
modify the substructure of the current individual, and obtain 
an improved individual. 

2) Component knowledge. Define “the probability of 
assigning given task in each time window” as the 
component knowledge on the solution space. The 
knowledge was recorded using matrix K with 
dimension m n , where m denotes the number of tasks, 
and n  denotes the number of time windows. For each 
element ijK , it denotes the probability of assigning task i in 

time window j . In this phase, all the elements in 

pheromone matrix K are initialized as 0 . 
D. Construction of Feasible Solutions 

1)State transition rule. For each time window k , we select 

the next to-be-performed task ia according to the following 

probability. 
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Here, Pr( , , )ia k t means the probability of selecting 

task ia in time window k at moment t ; ikK denotes the 

knowledge of allocating task ia in time window k ; 

( )i denotes the heuristic value of processing time of 

task ia , ( ) 1/ ( )i ii d r   ; ( )i implies the heuristic value of 

priority of task ia , ( ) ii p  ; , ,a b c denote the weight of 

different heuristic values respectively. In the construction 
process of feasible solutions, the traditional random state 
transition rule is replaced with the pseudo-random 
proportional rule. 

2) The construction mechanism of feasible solutions. 
Assign the tasks that can be arranged in each time window 
in sequence (select arranged tasks in current time window 
from the set of tasks that can be arranged in accordance 
with state transition rule) until no tasks can be arranged in 
this time window, and repeat the above process until no 
tasks can be arranged in all the time windows. 

E. Update the Knowledge Level 

1)  Local updating phase. After each iterative, the ant that 
obtained the optimal solution at this iterative have the ability 
to update current knowledge level using local updating rule, 
which is based on the optimal schedule to accomplish 
knowledge updating. If the task i is assigned to time 

window k , then 

(8)      ik ik LK K Q   
 

where LQ denotes the increase level of knowledge in local 

updating phase. 

2)  Global updating phase. After each iterative, the ants that 
obtained the global optimal solution (the best solution from 
the starting to current iterative) at this iterative have the 
ability to update current knowledge level using global 
updating rule, which is based on the optimal schedule to 
accomplish knowledge updating. If the task i is assigned to 

time window k , then 

(9)      ik ik GK K Q   
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where GQ denotes the increase level of knowledge in global 

updating phase. 

3)  Knowledge evaporation phase. After each iterative, the 
current knowledge will be updated with the effect of 
knowledge evaporation rule. In order to reduce the chance 
of falling into local optimal, we constrain the knowledge 

level between min max[ , ]  . The knowledge evaporation 

rule is 

(10)      max minmin{ ,max{ , (1 ) }}ik ikK K     

 
where (0 1)   denotes the evaporation coefficient of 

knowledge. 

F. Termination Criterion 

Termination criterion mainly dominates the optimized 
process of LACO algorithm. Since the testing instances are 
generated randomly according to certain rules, and their 
optimal solutions is unknown. For this reason, we predefine 
the largest iteration times as the termination criterion. 

 
Experimntal results 

40 testing instances were produced to validate this 
proposed approach. The generation rules of testing 
instances are summarized as follows: 

(1) Task number n values 100, 200, 300, 400 and 500. 
(2) Time window number m values 4, 6, 8 and 10. 
(3) The scheduling time is 0~1000 second. 
(4) Consider two kinds of task weights: the weight of 

tasks is same, and the weight of tasks is evenly selected 
from [1,50] . 

(5) The selection of task processing time. Firstly, 
calculate average processing time of all tasks t (see 

formula (11)), then select benchmark processing time it of 
every task (see Tab. I), and choose the required process 
time of tasks in each time window among [0.8 ,1.2 ]i it t . 

 

(11)       (1000 ) /t m n   

 
(6) The selection of available time window for tasks. 

Firstly, produce one random number RN among [3,5] , and 

select RN ones from all time windows for the given task. 
(7) The length of each time window was randomly 

produced among [800,1000] . 
(8) Generate testing instances of various scales as 

per n and m . 
The parameter setting of LACO is displayed in Tab. II. 

This approach was implemented using Matlab, and solve 
these testing instances with computer equipped with 
Pentium IV, CPU 2.4 GHz and storage 2G. 

 
Table 1. Probabilities of the benchmark processing time 

Probabilities 0.1 0.2 0.4 0.3 

it  [1,0.5 ]t  [0.5 , ]t t  [ ,1.5 ]t t  [1.5 ,2 ]t t  

 
The experimental results of solving 40 testing instances 

by our approach are as summarized in Tab. III. Each 
instance was solved 20 times, and the average results were 
recorded. The time complexity of our approach was 
analysed in Fig. 3. For the different situations, with the 
increase in the number of tasks, the computing time is 
increasing almost in linear. Simultaneously, the calculation 
time of the most complex instance is no more than 1800 

seconds (30 minutes), so the proposed algorithm is 
acceptable in terms of calculation time consumption. 

 
Table 2. Parameters of the experiment 

Symbol Value Remark 

AntSize 10 Number of ants 
a 3 The weight of pheromone heuristic value 

b 5 The weight of pheromone heuristic value 

c 2 The weight of process time heuristic value 

0 0.10 Initialized level of pheromone 

max 1.0 Upper limit of pheromone level 

min 0.01 Lower limit of pheromone level 

 0.02 Coefficient of pheromone evaporation 

LQ 0.02 
Increment level of pheromone in local 
updating phase 

GQ 0.10 
Increment level of pheromone in global 
updating phase 

Max Iter 20 The maximum iterations 
 

Table 3. Time complexity of the experiment using LACO 
SN n-m Result Time SN n-m Result Time 
1 100-4 2582 14.1 21 100-4 82 16.1 
2 200-4 5037 86.4 22 200-4 180 89.1 
3 300-4 7315 274.1 23 300-4 255 336.1 
4 400-4 10450 599.2 24 400-4 362 674.6 
5 500-4 12392 1174.2 25 500-4 488 1357.9 
6 100-6 2498 16.5 26 100-6 88 16.5 
7 200-6 5279 95 27 200-6 171 107.1 
8 300-6 7413 303.2 28 300-6 263 319.6 
9 400-6 9771 678.1 29 400-6 350 1012.3 
10 500-6 12542 1319.2 30 500-6 431 1603.5 
11 100-8 2526 18 31 100-8 80 17 
12 200-8 4839 102.9 32 200-8 162 109.4 
13 300-8 7297 288.2 33 300-8 248 317.9 
14 400-8 10373 653.3 34 400-8 346 825.6 
15 500-8 12967 1322.6 35 500-8 441 1806.7 
16 100-

10 
2319 18.3 36 100-

10 
73 19.3 

17 200-
10 

5157 108.3 37 200-
10 

162 110.8 

18 300-
10 

7011 305.4 38 300-
10 

247 328.7 

19 400-
10 

10251 698.6 39 400-
10 

346 976.1 

20 500-
10 

12479 1301.5 40 500-
10 

442 1761.3 

Note: “SN” represents the number of instances; “n-m” 
means the scale of instances; “Result” implies the sum of 
priority values after calculation; “Time” shows calculation 
time (unit: s). In the first 20 instances, the weight of every 
task is selected between 1 and 50; in the latter 20 tests, the 
weight of each task is 1. 
 

More experimental conclusions are summarized as 
follows. Tasks with the higher priority level have been 
performed whereas only part of those with lower priority 
level performed in the circumstances of limited time window 
resources. Most tasks have been accomplished in optimal 
(suboptimal) time windows (the least or minor time 
consumed in task performance). Also, each time window 
has the high utilization rate and balanced load (total time 
consumed in task performance). The above conclusions 
suggest that LACO is a viable and effective approach for 
this scheduling problem. 
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Fig. 3 Analysis of time complexity 

Conclusions 
A learnable ant colony optimization is designed to the 

satellite ground station system scheduling problem. It 
applies an integrated modelling idea which combines ant 
colony model with knowledge model. Experimental results 
suggest that LACO is an effective approach for the satellite 
ground station system scheduling problem. 

The future research directions can be summarized as 
follows. Further consider the constraints of the satellite 
ground station system scheduling problem, for example, 
logical constraints among tasks. Solve the satellite ground 
station system dynamic scheduling problem, such as, 
randomly add or delete tasks in the process of scheduling. 
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