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Abstract. In fluid mechanics, to obtain the multiple solutions in ordinary differential equations is always a concerned and difficult problem. In this 
paper, a novel RNA genetic algorithm (NRNA-GA) inspired by RNA molecular structure and operators is proposed to solve the parameter estimation 
problems of the multiple solutions in fluid mechanics. This algorithm has improved greatly in precision and the success rate. Multiple solutions can 
be found through changing accuracy and search coverage and multi-iterations of computer. At last, parameter estimation of the ordinary differential 
equations with multiple solutions is calculated. We found that the result has great accuracy and this method is practical. 
 
Streszczenie. W artykule zaproponowano nowy algorytm genetyczny NRNA-GA inspirowany strukturą molekularną RNA przeznaczony do 
rozwiązywania równań z wieloma rozwiązaniami w mechanice cieczy. (Nowy algorytm genetyczny do ustalania parametrów w równaniach 
różniczkowych o wielu rozwiązaniach) 
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1.  Introduction 

In fluid mechanics, the multiple solutions of the 
boundary value problems are important topics and have 
received considerable attentions. Many researchers had put 
forward some methods to solve such problems [1]. In 
general, a shooting method based on the fourth order 
Runge–Kutta scheme is effective numerically, which have 
been used to solve a lot of problems. In order to solve such 
problems, the boundary value problems are transformed 
into initial value problems by introducing new unknown 
parameters, which are decided by the boundary conditions. 
However, it is difficult to find all the unknown parameters 
which satisfy the boundary conditions, especially for the 
problems that the equation has multiple solutions. Later, the 
Homotopy Analysis Method is proposed by Liao SJ[2-3], 
which also is an efficient analytical method and has been 
used to solve many problems with multiple solutions[4-6]. 
However, the HAM suffers from a number of restrictive 
measures, such as the requirement that the solution sought 
ought to conform to the so-called rule of solution expression 
and the rule of coefficient ergodicity. By great search ability 
of NRNA-GA, many problems could be solved directly. 

For traditional genetic algorithm, it’s easy to fall into 
local optimum in multi-peak value. To avoid premature, 
Wang KT and Wang N[7] put forward the NRNA-GA and 
achieved better accuracy and computational stability. As the 
computational stability improves, The GA has been applied 
to many related fields by many scholars[8-14]. In this paper, 
combining this NRNA-GA with Runge–Kutta method, two 
problems with multiple solutions in fluid mechanics have 
been solved directly.  
 
2.  Runge–Kutta method 

The procedure of this NRNA-GA and Runge–Kutta 
method can be summarized as follows: 

Step 1: Initialize a population with  individuals, 
individuals contains 1 2, , , ns s s  and 1 2, , , nt t t ,that are 

the parameters. 
Step 2: Having known s  and t ,we use the Runge–Kutta 

method to calculate      1 1 2 2, , , , , ,n nf s t f s t f s t , Choose 

the best half of individuals and the worst half of individuals 
composing population. Sort the population into two groups, 
neural individuals and deleterious individuals. 

Step 3: Use the second selection criterion to reselect the 
individuals and sort the new population according to fitness 
value. Find the best half of individuals again. 

Step 4: Take the permutation operator and the stem-
loop operator in the new neural individuals. 

Step 5: Carry out mutation operator with adaptive 
mutation probability. 

Step 6: Carry out direct search, the best searching result 
will be saved to the next generation. 

Step 7: Repeat step 2 to step 6 until the termination 
criteria are met, and the solution is found. 

Step 8: If the absolute value of this solution and 
previous solution is bigger than  (   denotes the smallest 
distance of the two solutions, in this paper, we suppose that 
it is 0.001), then this solution would be saved, the number 
of solution gets three, iteration would be ended or go to step 
1 with changing the search coverage and precision of s  
and t . 
 
3. Parameter estimation of the multiple solutions of 
ordinary differential equations  

This paper introduces two examples about the multiple 
solutions of ordinary differential equations. Compared with 
former results, this method is practical and could be a new 
method for solving multiple solutions of ordinary differential 
equations.  

Example 1 Standard form of example one 
(1)            ( 3 ) ( ) 0RF a xF F FF F Fe            

(2)                 (0) 0, (0) 0, (1) 1, (1) 0F F F F       
This problem was proposed by Dauenhauer EC and 

Majdalani J[15].The problem is described as the flow of the 
fluid through a porous channel with expanding or 
contracting walls. The multiple solutions about this problem 
had been verified by HAM. 

In order to obtain numerical solutions, we transfer the 
problem Eq.1 and Eq.2 into a system of first-order 
equations by denoting the , , , ,F F F F F     using variables 

, ,F U V  and W , respectively 
(3)                                     F U   
(4)                                     U V   
(5)                                     V W   
(6)                ( 3 ) ( ) 0W xW V R FW UVa e       

The corresponding boundary conditions are: 
(7)                              (0) 0, (0) 1F V   
(8)                               (1) 1, (1) 0F U   

We introduce the parameters s  and t  as: 
(9)                              (0) , (0)U Ws t   



PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012                                                   119 

Then, the problem is to find the parameters s , t  and the 
solution of the Eqs.(3)~(7),(9) to satisfy the boundary 
conditions Eq.(8), which equals to solve the minimum of the 
Eq (10). 

(10)           min ( , ) (1) (1) (1) (1), ,f s t F F U Us t s t      

In this paper, a  and Re  are constant, , , ,F U V W are 

functions of x , the s  and t  could be calculated by IRNA-
GA combining Runge-Kutta method, which are shown in 
Table 1 and Fig.1 
 
Table 1.  Results of example 1 

s  t  
1, 15a Re  

 
-3.07073666351716 49.47642075453300 
0.90299839780270 1.78086800119114 
1.99589227130541 -7.67095271848505 

1, 20a Re  
 

-3.82265152902399 61.0776179413526 
1.03702993746147 0.29587895119010 
2.0447720197766 -7.99985122623911 

1, 25a Re  
 

-4.22781458974682 67.8332309623498 
1.04706972911731 0.05165295758529 
2.12878614480812 -8.38525618100756 

1.5, 11a Re  
 

-1.02592176353465 24.3534811945844 
0.16967476425616 10.2593624746419 
2.7342087588808 -15.4218567423479 

1.5, 15a Re  
 

-2.97302052785924 50.3904454468257 
0.96194263643516 1.39321598844909 
3.04894593132952 -17.7416719225856 

1.5, 20a Re  
 

-3.73830353823756 62.2668826917839 
1.04798035429035 0.25064712778261 
3.14237813863722 -18.4764310889657 
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Fig. 1.  Three solutions for F   when 1, 20Rea     
 

Example 2  Standard form of example two 
This case is proposed based on the first one, which 

considers slip boundary condition mainly. 
(11)         ( 3 ) ( ) 0RF a xF F FF F Fe            

(12)        (0) 0, (0) 0, (1) (1), (1) 1F F F F F         
In order to obtain numerical solutions, we transfer the 

problem Eq.(11) and Eq.(12) into a system of first-order 
equations by denoting the , , , ,F F F F F     using variables 

, ,F U V  and W , respectively 
(13)                                 F U   

(14)                                 U V   

(15)                                 V W   
(16)              ( 3 ) ( ) 0W xW V R FW UVa e       

The corresponding boundary conditions are: 
(17)                           (0) 0, (0) 1F V   
(18)                        (1) 1, (1) (1)F U V    

We introduce the parameters s  and t  as: 
(19)                          (0) , (0)U Ws t   

Then, the problem is to find the parameters s , t  and the 
Eqs.(13)~(17), (19) to satisfy the boundary conditions the 
Eq.18, which equals to solve the minimum of the Eq.20. 

(20)        min ( , ) (1) (1) (1) (1), , ,f s t F F U Vs t s t s t     

In this paper, a , Re and   are constant, , , ,F U V W are 

functions of x ,the s  and t  could be calculated by NRNA-
GA combining Runge-Kutta method, which are shown in 
Table 2 and Fig.2. 
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Fig. 2.  Variation of (1)F   with Re  when 1, 1a     

Table 2.  Results of example 2 
 t  (1)F 

1, 30, 0.1a Re    
 

-4.76529711849621 68.5776158756293 -28.9057 
1.01928828663859 0.00288486549493 -7.3478 
2.14694062094302 -8.48814539070719 5.4881 

1, 25, 0.1a Re    
 

-4.54719175033372 65.0716698340582 -27.7435 
1.01464866102083 0.02205372382491 -6.8544 
2.12497990129461 -8.37004001576469 4.9166 

1, 20, 0.1a Re    
 

-4.22089200517941 59.8687076255578 -26.5179 
1.01091020065614 0.13835433443889 -6.3986 
2.10347013804449 -8.23864977150653 4.1778 

1, 15, 0.1a Re    
 

-3.60491361735191 50.7943512903097 -24.7075 
0.94384679942016 0.84593316219643 -6.2855 
2.05470359349966 -7.94017504219414 3.0588 

1, 13, 0.1a Re    
 

-3.12511995437622 44.3618164925137 -23.2684 
0.86207370107576 1.75917190532014 -6.7675 
1.98580910963607 -7.54497231125171 2.2968 

1, 12, 0.1a Re    
 

-2.83219881825418 40.6888820383267 -22.4503 
0.72305219723039 2.92933057053818 -7.3224 
1.96405584802014 -7.36181911511876 1.904 

1, 11, 0.1a Re    
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-2.23047786485621 33.3837350329721 -20.2706 
0.490547035935 5.06837488850948 -8.4944 

1.91274891279469 -7.00938868746488 1.3827 

1, 10, 0.1a Re    
 

-1.29568607704307 22.9796225976044 -16.7559 
-0.16386663614862 11.3364008275034 -11.7346 
1.86085297932403 -6.60646119271783 0.8319 

1, 9.8, 0.1a Re    
 

-0.89065683219827 18.7471886473758 -15.1064 
-0.54395807550832 15.1822221744104 -13.561 
1.85007700927449 -6.51853883325089 0.7187 

1, 9.75, 0.1a Re    
 

-0.78337246975242 17.6706726471126 -14.6787 
-0.68012279990263 16.6066961168792 -14.2176 
1.84659719142646 -6.4926967738412 0.6884 

1, 9.74, 0.1a Re    
 

-0.72510464201416 17.0778479234031 -14.4293 
1.84218401163484 -6.47052566205862 0.6727 

1, 9, 0.1a Re    
 

1.79843767134007 -6.11290776441621 0.2493 

1, 8, 0.1a Re    
 

1.7259840311966 -5.55555952919948 -0.311 

1, 5, 0.1a Re    
 

1.58259906353928 -4.37109574582475 -1.3362 

1, 4, 0.1a Re    
 

1.55603922749501 -4.14102176213784 -1.5049 

1, 3, 0.1a Re    
 

1.53610742953001 -3.96568869726389 -1.6243 

1, 2, 0.1a Re    
 

1.52137315782861 -3.83160205640841 -1.7102 

1, 1, 0.1a Re    
 

1.50983369584887 -3.72607796813917 -1.7727 

1, 0, 0.1a Re   
 

1.5010122063189 -3.64282218046718 -1.8194 
 

4. Conclusions 
In this paper, the IRNA-GA combining with Runge–Kutta 

method is applied to two examples and the result is 
satisfying. So the method is practical and could be a new 
method for solving multiple solutions of ordinary differential 
equations. 
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