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Effects of Local Volume Constraints on Optimal Topologies of 
Continuums 

 
 

Abstract. Optimal stiffness design of a structure with local volume constraints on its subdomains is investigated. In practical engineering, a structure 
may have many subdomains with local volume constraints to meet the multi-function of structure. A new heuristic approach simulating the bone 
remodelling process is presented to solve such problem. The essentials of the present approach are summarized as follows. Firstly, the topology 
optimization of structure is equivalent to bone remodelling process. Corresponding to the dead zone in bone remodelling theory, a floating interval of 
reference strain energy density (SED) is proposed. Secondly, the update of the design variable, i.e. the relative density of a material point, is 
determined by comparison between the local SED and the current interval of reference SED. Thirdly, to satisfy the global constraints in an 
optimization problem, the global reference interval changes in simulation. Finally, to satisfy the local volume constraints of subdomains in structure, 
the same amount of local reference intervals are adopted to modify the update rule of local materials. Numerical examples are employed to 
demonstrate the effects of the local volume constraints on the optimal topologies of structures.  

 
Streszczenie. Zbadano metody optymalnego projektowania system z ograniczeniami lokalnych rozmiarów w subdomenach. Przedstawiono nową 
metodę heurystyczną symulującą szkielet procesu modelowania w celu rozwiązania tego problemu (Efekt ograniczeń lokalnych wielkości w 
optymalnej topologii kontinuum) 
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1. Introduction 

To give an optimal stiffness design of a continuum 
structure, topology optimization is an important mean in the 
conceptual design phase of the structure [1]. The reason is 
that traditional shape or size optimization can not change 
the topology of a structure during the solution process. Du-
ring the past two decades, theories of topology optimization 
methods have been developed, rapidly. Briefly, Eschenauer 
and Olhoff [2] classified those methods into two types, i.e. 
the material methods and the geometry methods [3-6].  

For a traditional stiffness design of a continuum 
structure global constraints, e.g., volume constraint of 
structure, the displacement constraint and/or the stress 
constraint on a region of structure, has been investigated 
for a long time and can be solved successfully. However, a 
structure may have many subdomains and some of the 
subdomains have volume constraints to meet the multi-
function of structure, such as being channels for fluid or 
cables or as frames to support local concentrated loadings. 
The local volume constraint influence should be considered 
together with other constraints in the optimization of a 
structure with subdomains. Obviously, to solve such kind of 
optimization problem is significant in engineering. But little 
effort has been taken to solve such kind of problem 
previously. 

In the present work, a simply bionics approach is 
presented to solve this kind of topology optimization 
problem. In optimization process, the update rule of design 
variables is performed by an intuitive evolutionary method 
based on bone remodeling theories [7-10], rather than by a 
mathematical programming approach.  
 
2. Material Properties 
2.1. Definitions of elastic tensor 

In porous materials, the mechanical properties are 
related closely to their micro-structures. Efforts have been 
taken to establish theoretical foundation to characterize the 
accurate relationships between the anisotropy and the 
microstructure [11-14]. It was found that micro-structural 
properties can be described as an invariant form by a set of 
even rank fabric tensors [14] and can be assessed 
accurately using stereological methods [15]. They 
concluded that the principal directions of the fabric tensor 

coincide with those of orthotropic elastic tensor. In most 
applications, orthotropy material properties seem to be 
sufficiently well described by a symmetric, positive and 
definite second rank fabric tensor [13]. To express the 
material properties, here we adopt the approach suggested 
by Zysset and Curnier [13]. 
 

2.2. Stiffness tensor 
From an experimental point of view, the component 

matrix of anisotropic elasticity of a material can be identified 
by using two independent material constants (

0 0,  ), a 

second rank fabric tensor and an exponent ( ) [13] 

 (1)             0, 0 0ijkl ij kl ik jl il jkD B B B B B B          

ijB is the component matrix of fabric tensor. In this work, a 

particular elasticity model with 
0 0,      and 1.5   in 

Eq. (1) is adopted. Clearly, 
0,ijklD  in Eq.(1) expresses an 

isotropic material when 
ijB  is proportional to the Kronecker 

delt (
ij ), i.e.,

ij ijB    . Meanwhile, 
0,ijklD  is expressed as 

 (2)            3
0,ijkl ij kl ik jl il jkD            

 

where  is the volume fraction of solid in porous material. 
 

3. Optimization model 
3.1. Floating interval of reference SED method 

For the current floating reference interval method, the 
formulations of topology optimization can be expressed as 
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where 
m  is the design variable of the m-th material point 

(or element). 
mu  is the SED of the m-th material point, i.e., 

half of the scalar product of stress tensor and strain tensor. 

inf sup
ref refu u    is the final interval of reference SED, or the 
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global reference interval. 
j  is the j-th constraint function. 

min  is set to be 0.001 to keep fabric tensor to be positive 

and definite. K is the global stiffness matrix of structure in 
finite element (FE) analysis. U and P are the global nodal 
displacement and nodal force vectors, respectively. 

 

3.2. Present topology optimization formulations 
(a) As the whole structure has a displacement constraint, 

the formulations for such optimization problem is 
constructed as 

 (4)        
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where 
inf sup

ki ref ki ref
sub subu u    is the interval of reference SED for 

the ki-th subdomain or the the ki-th local reference interval. 

0d  is the critical value of displacement constraint. 
mv  is the 

amount of solid phase of the m-th material point. ki
subV  is the 

critical value of the volume constraint on the ki-th 
subdomain. When the m-th material point locates in the ki-

th subdomain, ki
sub equals 1. Otherwise, 

ki
sub equals 0.  

(b) As the whole structure has a volume constraint, the 
formulations for such kind of optimization problem can 
be expressed as follows 

 (5)     
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where 
0V  is the critical value of the volume constraint on the 

whole structure. 
 

3.3. Update rule of design variables 
According to the concept of dead zone in bone 

remodeling theory [8], we introduce the following update 
rule. In order to obtain the optimal topology of a structure, a 
state of remodeling equilibrium which requires the local 
SED of each material point within the admissible design 
domain being in an interval of reference SED [10], should 
be reached. According to the above rule, the material 
distribution within the design domain will be changed in 
simulation if the local SED is out of the current reference 
interval. Mathematically, the increment of the relative 
density of a material point, which locates in the ki-th 
subdomain, can be expressed as 
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where 
,k m  is the increment of the relative density of the 

m-th material point at the k-th iteration step. 
1g , the 

deposition speed, is set to be 0.09. 
2g , the dissipation 

speed, is 0.06, in the present work. 
For the update of the relative densities of the material 

points in the rest of the structure can be illustrated as 
follows 
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Therefore, the relative density of a material point in design 
domain can be updated as follows 
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Correspondingly, the stiffness tensor of the material point 
can be expressed as follows  
 (9)              3

, 1,m ijkl k m ij kl ik jl il jkD        
    

 

 

3.4. Update rules of the intervals of reference SED 
To satisfy the constraints in optimization problem, the 

SED reference interval needs upated. Currently, 

inf sup
ref ref refu u u  is suggested to keep SED uniformly in 

structure. Therefore, only the supremum of interval needs 
updated. Meanwhile, the update rule of the reference 
interval depends on the type of active constraint. 

 (10)                        
0
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where 
0H  is the critical value (specified before simulation) 

of the active constraint (e.g., volume constraint, 
displacement constraint). kH  is the current value in the k-th 
iteration step. For example, if an optimization problem with 
volume constrain, 

0H  is the specified volume for the final 

structure and kH  is the current volume after the k-th 
optimization of structure. The exponent   is positive when 
the volume constraint acts as the active constraint and is 
negative for displacement constraint. In the present work, 
  equals 1.0. 

 

3.5. Update of the global reference interval 
In an optimization, the global reference interval is 

updated firstly according to the active constaint on the 
whole structure. The update of the supremum of the 
reference interval is as follows 
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Where the exponents   and   are limited in simulation, 

e.g.  1.0 2.0  ,  10 30  .  , the algorithm tolerance, 

is set to be 0.001. Integer  3, 4,5FEAi   is adopted. 
 

3.6. Update of the local reference intervals 
As the subdomains only have volume constraints, the 

update of the local reference intervals is determined by their 
volume constraints. 

inf
ki ref ki ref ref

sub sub suf kiu u u   , (ki =1, 2, …, 

ks) is used. Ratio 
ki  changes with respect to the volume of 

the ki-th subdomain. 
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Where ( )k
kiV  is the current volume of the ki-th subdomain 

at the k-th iteration step. 0
kiV  is the critical value of the ki-th 

subdomain. The initial value of the ratio, i.e. 0
ki =1.0. 

 

3.7. Optimization procedure for the present approach 
Step 1: Discretize the structure with finite elements and 

initiate parameters and let k=1; 
Step 2:  Obtain the strain and stress fields by using FE 

analysis, calculate the local SED of each element; 
Step 3: Update the relative density (Eq.(8)) of each 

element, renew the global and local reference 
intervals (Eqs.(11) and (12)); 

Step 4: Determine iteration criterion: if the convergent 
conditions (in Eq. (13)) are satisfied or k is equal to 
a given maximum number of iteration, then go to 
Step 5, otherwise let k=k+1 and go to Step 2; 

Step 5:  Stop. 
In the initial design, all the relative densities are set to be 
unity over the admissible design domain. The initial 
supremum of the global reference interval is set to be equal 
to the average SED of the initial structure under the given 
loading conditions. The convergent criteria in Step 4 is 
expressed as 
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where integer M is no less than 2. 
 

4. Numerical examples 
Financial software ANSYS (v12.0) is adopted for FE 

analysis. 
4.1. Example 1-A beam with many subdomains 

Fig. 1 shows the initial design domain of a simply-
supported sheet beam, which is made of three unit square 
subdomains. A concentrated force P is applied on the 
centre of the upper surface, vertically. Only one isotropic 
material with  Poisson’s ratio of 0.3 exists in structure. The 
objective is to minimize the structural compliance with 
global volume constraint ratio of 25%. Two cases are 
considered to find the difference between the final material 
distributions with or without local volume constraint.  
(a) only global volume constraint on structure is 

considered; 
(b) Besides global volume constraint, subdomain 1 and 

subdomain 3 are specified to have the same local 
volume ratio, with local critical volume ratio of 21%. 
Fig. 2a gives the optimal material distribution of the 

beam with only global volume constraint. The materials 
distributes very near the site subjected to concentrated 
forece. Fig. 2b shows the optimal topology of the beam with 
both of global and local volume constraints. The material in 
subdomain 2 distributes loosely. Clearly, the topologies are 
different in subdomain 2 for two cases.  

 

 
Fig. 1. Initial design domain of structure 

 

 

(a)  without local volume constraint 

 

(b) with local volume constraints 

Fig. 2. Optimal material distributions in structure with or 
without considering local volume constraints 
 
4.2. Example 2-Cantilever beam 

The design domain shown in Fig. 3 is a deep cantilever 
beam with size of 2.0m by 1.26m and the thickness is of 
0.001m. The concentrated force, P=1.0kN, vertically acts on 
the centre (point C) of the right side. A rectangular 
subdomain with size of 0.48m by 0.5m exists in the middle 
of the structure. Outside of the subdomain, the frame with 
thickness of 0.02m is fixed, i.e., the material of frame keeps 
unchanged in simulation. The elastic modulus and the 
Poisson’s ratio of the material outer of the subdomain are 
21 GPa and 0.2, respectively.  

The objective is to minimize the structural compliance. 
The critical value of the local volume ratio of the subdomain 
is specified to be 50%. Two cases are investigated: 
(a) The whole structure has only one material and has 

displacement constraint, i.e., the displacement of point 
C reaches 0.001m; 

(b)  The whole structure has displacement constraint, i.e., 
the displacement of point C reaches 0.001m. In the 
subdomain, the elastic modulus and Poisson’s ratio of 
material are 69 GPa and 0.3, respectively. 

Fig. 4 gives the optimal material distributions in beam 
with displacement constraint on point C for cases (a) and 
(b). Obviously, the material distributes differently between 
the results of case (a) and (b). 
 

 

Fig. 3. Initial design domain of beam 
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(a) results for case (c) (b) results for case (d) 

Fig. 4. Optimal material distributions in beam with 
displacement constraint on point C 
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(b) iterations of local volume ratios 

Fig. 5. Iteration histories of the volume ratios of both the 
whole structure and the subdomain with displacement 
constraint on point C 

 
Fig. 5 implies the iteration histories of the volume ratios of 
both the whole structure and the subdomain when the 
structure has displacement constraint on point C. For case 
(a), the structural volume ratio reaches 17.5% after 51 
iterations. The structural volume ratio reaches 17.1% for case 
(b) after 50 times of iteration. 
 

5. Conclusions 
In practical engineering, the stiffness design of a 

structure may have many volume constrained subdomains 
for the purpose of multi-function. A bionics method is 
developed in the present work to solve such problem. The 
validity of the method is verified by numerical examples. 
The results of numerical examples also show that the 
optimal material distributions of a structure with or without 
considering local volume constraints on its subdomains are 
different. Considering further manufacturing, the local 

volume constraints must be considered in topology 
optimization. 
 
Acknowledgements 

The financial supports of the National Natural Science 
Foundation of China (50908190, 51179164) and the 
Research Foundation of Northwest A&F University 
(QN2011125) are greatly acknowledged. 

 
REFERENCES 

[1]  Bendsøe, M.P., Sigmund, O., Topology Optimization-Theory, 
Method and Applications. Springer Verlag, Berlin Heigelberg, 
2003 

[2]  Eschenauer, H.A.. Olhoff, N., Topology optimization of 
continuum structures: A review. Applied Mechanics Review. 
54(2001), 331-390 

[3]  Bendsøe, M.P., Kikuchi, N., Generating optimal topologies in 
structural design using a homogenization method. Computer 
Methods in Applied Mechanics and Engineering. 71(1988), 
197-224 

[4]  Rozvany, G.I.N., Zhou, M., Birker, T., Generalized shape 
optimization without homogenizaiton. Structural Optimization. 
4(1992), 250-252 

[5]  Xie, Y.M., Steven, G.P., A simple evolutionary procedure for 
structural optimization. Computers and Structures. 49(1993), 
885-896 

[6]  Wang, M.Y., Wang, X., Guo, D., A level set method for 
structural topology optimization. Computer Methods in 
Applied Mechanics and Engineering. 192(2003), 227-246 

[7]  Wolff, J., The law of bone remodelling. (Das Gesetz der 
Transformation der Knochen, Hirschwald, 1892) [Maquet P., 
Furlong R. Trans], Springer, Berlin, 1986 

[8]  Huiskes, R., Ruimerman, R., van Lenthe, G.H., et al. Effects 
of mechanical forces on maintenance and adaptation on form 
in trabecular bone. Nature, 405(2000), 704-706 

[9]  Cai, K., Chen, B.S., Zhang, H.W., Shi, J., Stiffness design of 
continuum structures by a bionics topology optimization 
method, Journal of Applied Mechanics (ASME), 75(2008), 
051006 

[10]  Tovar A., Bone remodeling as a hybrid cellular automaton 
optimization process: (Doctoral dissertation). Notre Dame: 
University of Notre Dame, 2004 

[11]  Cowin, S.C., The relationship between the elasticity tensor 
and the fabric tensor. Mechanics of Materials. 4(1985), 137-
147 

[12]  Boehler, J.P., Applications of tensor functions in solid 
mechanics, Springer Verlag, Wien, 1987 

[13]  Zysset, P.K., Curnier, A., An alternative model for anisotropic 
elasticity based on fabric tensors. Mechanics of Materials. 
21(1995), 243-250 

[14]  He, Q.C., Curnier, A., A more fundamental approach to 
damaged elastic stress-strain relations. International Journal 
of Solids and Structures. 32(1995), 1433-1457 

[15]  Han, T.S., Dawson, P.R., Representation of anisotropic 
phase morphology. Modelling and Simulation in Materials 
Science and Engineering. 13(2005), No.2, 203-223 
 

 
Authors: A/prof. dr Kun Cai, College of Water Resources and 
Architectural Engineering, Northwest A&F University, E-mail: 
kuicansj@163.com; Dr Zhaoliang Gao(Corresponding author), 
Institute of Soil and Water Conservation, Northwest Agricultural & 
Forestry University, E-mail: gzl@ms.iswc.ac.cn. 
 

 


