
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012 177

Bai-Da ZHANG1, Yu-Hua TANG1, Jun-Jie WU1, Shuai XU2

National laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense Technology (1)
Department of Information Engineering, Academy of Armored Force Engineering (2)

Opportunity Cost Model of the Task Scheduling in
Heterogeneous Systems

Abstract. With the micro-electronics technology has encountered a bottleneck, adding heterogeneous core has become the primary means of
increasing processor speed. However, how to assign heterogeneous processor to maximize the performance becomes an urgent problem. The
problem has been proved to be NP-complete problem, i.e. it cannot find the optimal solution in polynomial time. This article draws on the idea of the
economy, given the concept of opportunity cost in heterogeneous systems, and were analyzed by the opportunity cost model for task scheduling on
heterogeneous systems. On this basis, draw the basic principles of a number of task scheduling. Theory and simulation results show that the task
assignment algorithm to achieve the desired performance.

Streszczenie. Przy projektowaniu układów mikroelektronicznych niejednorodny rdzeń umożliwia zwiększenie szybkości procesora. W artykule
przedstawiono ideę uwzględnienia modelu kosztów do projektowania kolejności zadań w systemie niejednorodnym. (Możliwość wykorzystania
modelu kosztów w projektowaniu kolejności zadań w systemach niejednorodnych)

Keywords: Opportunity Cost, Comparative Advantage, Heterogeneous Systems, Task Scheduling
Słowa kluczowe: Koszt alternatywny; atutach; Różnica gou System.

Introduction
As feature sizes continue to decrease, the research of
processor encounter a problem that performance is limited
by increasing the processing capacity of a single processor
core, or just improve the number of cores on the system.
Thus, heterogeneous systems become the mainstream and
heterogeneous systems achieve good performance in many
applications.

With the widening range of application of computers,
distributed and heterogeneous systems (DHS, the
Distributed Heterogeneous System) are becoming an
effective tool to solve complex application problems. A set
of heterogeneous computers is used to solve a specific task
in order to obtain the better performance. There may be
have hundreds of tasks in the job queue of a computer
system, therefore how to allocate processor time between
processes, is undoubtedly an important issue. Traditional
scheduling algorithm consists of first come first served,
shortest job priority. However, in heterogeneous systems,
the processor allocation to new problems, that is, the same
task on different processors have very different execution
time, so that the processor will be allocated directly related
to the operation of the system as a whole time and
efficiency [1-5]. The processor allocation problem, also
called processor scheduling. Task scheduling problem in
the DHS, to play the parallel performance of the system and
maintain the load balancing is very important. The problem
has been proved to be NP-complete problem, i.e. it cannot
find the optimal solution in polynomial time. Therefore,
tireless efforts are put in to design a scheduling algorithm
which can get a better solution with limited cost. Commonly
used method is heuristic and random search of approximate
methods [3,5-9].

A good scheduling algorithm should be considered,
which may contain features following [10-14]:
 Resource utilization rate - utilization of the CPU or

other resources as high as possible and can work in
parallel.

 Response time - the interactive user response time as
small as possible, or as soon as possible to deal with
real-time tasks.

 Turnaround time - batch job submission to the system
to the job is completed the results obtained up to this
time interval that the job turnaround time, job turnaround
time, or average job turnaround time as short as
possible.

 Throughput - the unit of time to deal with the number of
jobs as much as possible.

 Fairness - to ensure that each user for each process to
obtain a reasonable share of the CPU or other resources
sharing.
In order to studying processor task scheduling problem

of heterogeneous systems, we introduce the idea of
economics, which contains opportunity cost and
comparative advantage, which is trade can improve
economic status of all members [15,16]. Corresponding to
the heterogeneous systems, which mean a reasonable task
scheduling, the throughput of each processor can improve.

The creative research of this paper is the concept of
opportunity cost in heterogeneous systems and applications
to achieve at the task scheduling. The paper is organized
as follows, Section 1 is introduction. Section 2 discusses
the motivation of the paper. Scheduling algorithm is given in
Section 3. Section 4 is the proof. Section5 describes the
simulation experiments. Finally, we draw conclusions and
discuss the future works in Section 6.
Motivations
First, task scheduling will be described formally. For a given
task queue T1, T2, T3, ..., Tn, task scheduling is to determine
the time when task Ti is executed for the single processor.
In homogeneous system, the processor is also need to be
assigned when the same task queue is given. However,
when considering heterogeneous system for the same
scheduling problem, everything is changed. For example,
there are a task queue and two processors, namely U1 and
U2. Each task execution time on different processors is
shown in Table 1:

Table 1. Task queue and execution time

Execution Time T1 T2 T3 T4 T5
U1 5 17 27 21 17
U2 3 21 11 32 15

If the first task of the queue is assign to the idle

processor, then the execution is shown in Figure 1, i.e.
tasks T1, T3, T5 executed in processor U1, while tasks T2
and T4 executed in processor U2. Total computation time of
U1 was 49 while total computation time of U2 was 53.

178 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012

Fig.1. Scheduling method 1

If we adopt the scheduling policy shown in Figure 2,
tasks T1, T3, T5 executed in processor U2, while tasks T2
and T4 executed in processor U1, then total computation
time of U1 was 38 while total computation time of U2 was
29. This is a surprising result! Because we just changed
task allocation strategy, but the execution time of all
processors have reduced!

Fig.2. Scheduling method 2

The purpose of this paper is to introduce the approach
of economics to solve the optimization problem of task
scheduling in heterogeneous systems, and making the sum
of the processor execution time decreases. It is to say that
transplanting the approach how to organize production in
economics to the task allocation in heterogeneous
computing systems, which can be convenient scheduling
arrangements for a task queue and can maximize
performance of systems.

Solutions

In order to facilitate comparison, some index will be
given first to evaluate scheduling strategies.

Definition 1(total execution time): Supposing a group
of tasks Ti and a group of processors Uj, the total execution
time is T = Σtj, where tj is the execution time of processor j.

This is an index for heterogeneous computing systems.
It is a function of task scheduling strategy. Take Figure 1
and Figure 2 as example, different scheduling strategy will
lead to different total execution time. Smaller the index is,
the better scheduling strategy is.

The following will give a simple example; it will be used
to illustrate some concept.

There are two processors, namely U1 and U2 (we can
suppose they are a GPU and a CPU respectively), and two
tasks, namely A and B (for ease of understanding, imaging
feature extraction and pattern recognition). Their execution
time is shown in Table 2

Table 2. Execution Time (unit: seconds)

Execution Time A B
U1 1 2
U2 2 6

It can be seen from the table, U2 can execute two tasks

more quickly than processor U1. Then what strategy should
be used to schedule processors to maximize the
performance of the system? Next, scheduling strategy will
be introduced. This can be disassembled into two parts, i.e.
constructing opportunity cost table and scheduling.

(1). Constructing Opportunity Cost Table
Definition 2 (Opportunity Cost): The opportunity cost

of processor U run task A is the number of task B that U
can execute in the time when a task A is executing.

For the example given in Table 2, we can construct the
opportunity cost table shown in Table 3. Opportunity cost of
U1 run task A, for example, is 1/2 B. Because the time
executing a task A is 1 second, and the time executing a
task B is 2 seconds.

Table 3. Opportunity cost table of Table 2

Opportunity Cost A B
U1 0.5 B 2 A
U2 0.33 B 3 A

Definition 3 (Comparative Advantage): U1 have

comparative advantage when it execute task A compared
with U2 execute task B, if and only if C1<C2, where C1 and
C2 are the opportunity cost that processor U1 run task A and
processor U2 run task A respectively.

For example, in Table 2, processor U1 running task B
has comparative advantage. Because the opportunity cost
of processor U1 running task B is 2 task A, but processor U2
is 3 task B. Similarly, processor U2 running task A has
comparative advantage.

It can be seen from Table 3 that the opportunity cost of
two task of the same processor is reciprocal. Thus it can be
inferred that if processor U1 running task A has comparative
advantage, then processor U2 running task B must have
comparative advantage. That is, each processor can
contribute to performance of system.

(2) Scheduling Method
Scheduling method is based on the following analysis.
Definition 4(possible boundary of computing):

Supposing only processor U1 existing in the system, then 60
task A or 30 task B or some combinations of task A and B
can be completed within 60 seconds time. This can be
shown in Figure 3 as the upper diagonal line, named as
possible boundary of computing. Similarly, U2’s possible
boundary of computing can be drawn in Figure 3.

Fig.3. Possible boundary of computing of processors

Processor U1 can only reach the point in the triangle that
surrounded by A axis, B axis and U1’s possible boundary of
computing when processor U2 is absence. However, if
processor U1 and U2 can work together to finish each
other's task, it is possible to break through this boundary.
For example, processor U1 need to execute 30 task A and
15 task B, and processor U2 need to perform 15 task A and
5 task B. Because U1 has a comparative advantage to
execute task B, then U1 help U2 to execute 5 task B, and U2
help U1 to execute 13 task A. The total execution time is
shortened. The total time of processor U1 reduced from 60
to 57 and the total time of processor U2 reduced from 60 to
56.

It can be seen from the above analysis, two different
processors, in the case of mutual cooperation, their own are
able to accomplish more tasks. This conclusion is also true
for more processors and tasks. Following section will give
the proof that relation of comparative advantage is a full

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012 179

order relation, which means that we can assign tasks
according to comparative advantage relations.

Table 4. Time and number of tasks under different scheduler

 number of
Task A

number of
Task B

total time

 un-
coop
erate

coo
pera

te

un-
coop
erate

coo
per
ate

un-
coop
erate

coop
erate

U
1

30 17 15 20 60 57

U
2

15 28 5 0 60 56

Proving

In this section, we’ll give out the proving that
comparative advantage relations are full order relation.
Because any pair of element of a set that have total
ordering relation are comparable and order can be used as
the guideline to scheduling.

First, a quaternary relation R(U,V,A,B) is given, where U
and V belong to the processor set, A and B belong to the
task set. The value R(U, V, A, B)=1 if and only if the
processor U perform task A has a comparative advantage
to processor V execute task B, and R(U, V, A, B)=0 for
others.

we define other two dualistic relations, which are SUV(A,
B)=R(U,V,A,B) and TAB(U,V)= R(U,V,A,B). And the proving
process will be divided into two parts, namely relation SUV is
full order relation and relation TAB is full order relation.

Full order relation can be proved directly by its definition.
A relation is full order relation means that if we denote this
relation as ‘≤’, then following statements will be true for any
a, b and c:
 If a ≤ b and b ≤ a then a = b (antisymmetry)
 If a ≤ b and b ≤ c then a ≤ c (transitivity)
 a ≤ b or b ≤ a (completeness)
4.1 SUV is full order relation

Completeness and anti-symmetry of SUV can be gotten
from the definition of SUV directly. Transitivity of the relation
SUV can be proved as the following: Supposing A, B, and C
are tasks, U and V are processors, then opportunity cost
table can be constructed as Table 5 by the definition, where
Xij is the number of task j that processor U can execute in
the time of executing a task i, Yij is the number of task j that
processor U can execute in the time of executing a task i.

Table 5. Opportunity cost of relation SUV

Opportunity Cost A B C
U XAB/XAC XBA/XBC XCA/XCB
V YAB/YAC YBA/YBC YCA/YCB

Supposing SUV(A, B) = 1, and SUV(B, C) = 1, then

inequalities XAB <YAB and XBC <YBC can be gotten by the
definition of relation SUV directly. It is easy to know that XAC
= XAB * XBC, YAC = YAB * YBC, then inequalities XAC<YAC can
be inferred, i.e. SUV (A, C) = 1. The transitivity of the
relationship SUV is proved.

In summary, the relationship SUV (A, B) is a total order.
4.2 TAB is full order relation

Completeness and anti-symmetry of TAB can be gotten
from the definition of TAB directly. Transitivity of the relation
TAB, can be proved as the following. U1, U2 and U3 are
processors that be chosen randomly. A, B are tasks. Then
opportunity cost table can be constructed in Table 6
according to the definition, where. Xij, Yij, Zij are the number
of task j that processor U1, U2, U3 can execute respectively
in the time that a task i is executed.

Table 6. Opportunity cost of relationship TAB

Opportunity cost A B
U1 XAB XBA

U2 YAB YBA

U3 ZAB ZBA

If TAB (U1, U2) = 1 and TAB (U2, U3) = 1, then inequalities
XAB <YAB and YAB <ZAB can be gotten by the definition of TAB.
Inequality XAB<ZAB can be inferred logically, i.e. TAB (U1, U3)
= 1. The transitivity of the relationship TAB is proved.

In summary, the relationship TAB (U, V) is a total order.

Experiments
In this paper, validation of the task scheduling algorithm

presented is done by simulation experiments The process
can be described as below, the system contains five
different processors Ui (i = 1, 2, ..., 5). And 8 tasks, which
are A, B, ..., H will be executed on this system. The
execution time of each task on different processors is
shown in Table 7. The method used by the task scheduling
is the same for any other value.

Table 7. Task execution time on each processor

Execution Time A B C D E F G H

U1 45 5 10 10 35 40 40 45

U2 50 15 50 25 5 40 5 35

U3 10 30 50 50 45 20 15 20

U4 50 50 25 40 50 35 5 50

U5 35 50 45 50 35 10 5 5

For any pair of tasks, such as A and B, and all
processors Ui, opportunity costs table can be constructed
According to the definition directly as Figure 4 shows.
According to the opportunity cost table of task A, we can
order all processor Ui. The result is U1<U2<U4<U5<U3. From
the result, U3 is the best processor to execute task A. When
there is a task A waiting to execute and U3 is idle, the task
should be executed on processor U3.

Opportunity Cost A/B

U1 9

U2 10/3

U3 1/3

U4 1

U5 7/10

Priority U1 U2 U3 U4 U5

U1 * > > > >

U2 < * > > >

U3 < < * < <

U4 < < > * >

U5 < < > < *

U1<U2<U4<U5<U3

Fig.4. Opportunity cost and processors ordering

Similarly, priority order can be constructed for any other
task pairs. Such a task, the processor will have a priority
ranking, and thus the scheduling of all tasks can be
achieved.

180 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 9b/2012

In order to compare the performance of the proposed
algorithm, the two scheduling strategies is implemented.
They are as follows:

(1) First-In First-out strategy (FIFO for short): to maintain
a task arrives in the queue sorted by arrival time, processor
idle scheduling task execution queue first.

(2) Opportunity Cost Model strategy (OCM for short): A
queue is maintained for each task. When a processor is
idle, a task which it can do better is executed.

Figure 5 shows the generated task arrival sequence
comparison chart for two methods mentioned above. Task
to generate a completely random manner, which includes
two meanings: the type and number of tasks is random, as
well as interval between each batch task arrival is random.
The result shows that 19.6% of execution time is saved
when OCM strategy is used.

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

FIFO
OCM

Fig.5. Total execution time of the two scheduling strategies

Conclusions

Heterogeneous system is now the direction of
development, but the scheduling of heterogeneous systems
lack the guidance of the mathematical model. This article
introduced the concept of opportunity cost and comparative
advantage to task scheduling of heterogeneous systems.
The theoretical analysis and experimental verification
shows that heterogeneous systems can improve the
efficiency of each processor by giving priority to the works
they are good at. Through this analysis, we can see that the
concept of opportunity cost of task scheduling is helpful.

Acknowledgement

This work was supported in part by the Young Scientists
Fund of the National Natural Science Foundation of China
(Grant Nos 61003082, 60903059), the National Natural
Science Foundation of China (Grant Nos 60873014), and
the Science Fund for Creative Research Groups of the
National Natural Science Foundation of China (Grant Nos
60921062).

REFERENCES
[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum

Vol. 83-87 (1992), p. 119
[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech

Publications, Switzerland 1987).
[3] Y. Mishing, in: Diffusion Processes in Advanced Technological

Materials, edtied by D. Gupta Noyes Publications/William
Andrew Publising, Norwich, NY (2004), in press.

[4] G. Henkelman, G.Johannesson and H. Jónsson, in: Theoretical
Methods in Condencsed Phase Chemistry, edited by S.D.

Schwartz, volume 5 of Progress in Theoretical Chemistry and
Physics, chapter, 10, Kluwer Academic Publishers (2000).

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of
Materials Research (2003)

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S.
Patent 6,231,666. (2001)

[7] Information on http://www.weld.labs.gov.cn
[1] Silberschatz A, Galvin P B, Gagne G, et al. Operating system

concepts, 4[M]. [S.l.]: Addison-Wesley, 1998.
[2] Tanenbaume, S A. Modern operating systems, 2[M]. [S.l.]:

Prentice Hall New Jersey, 1992.
[3] Lo, M V. Heuristic algorithms for task assignment in distributed

systems[J]. Computers, IEEE Transactions on, 1988, 37(11):
1384-1397.

[4] Casavant T L, Kuhl J G. A taxonomy of scheduling in general-
purpose distributed computing systems[J]. Software
Engineering, IEEE Transactions on, 1988, 14(2): 141-154.

[5] Shen C C, Tsai W H. A graph matching approach to optimal
task assignment in distributed computing systems using a
minimax criterion[J]. Computers, IEEE Transactions on, 1985,
100(3): 197-203.

[6] Grimshaw A S, Weissman J B, West E A, et al. Metasystems:
an approach combining parallel processing and heterogeneous
distributed computing systems[J]. Journal of Parallel and
Distributed Computing, 1994, 21(3): 257-270.

[7] ChafiI H, Devito Z, Moors A, et al. Language virtualization for
heterogeneous parallel computing[Z]. [S.l.]: [s.n.], 2010: 835-
847.

[8] Buyya R, others. High performance cluster computing:
architectures and systems (volume 1)[J]. Prentice Hall, Upper
Saddleriver, Nj, USA, 1999, 1(期缺失): 999.

[9] Sunderam V S, Geist G A. Heterogeneous parallel and
distributed computing[J]. Parallel Computing, 1999, 25(13/14):
1699-1721.

[10] Wang L, Siegel H J, Roychowdhury V P, et al. Task matching
and scheduling in heterogeneous computing environments
using a genetic-algorithm-based approach[J]. Journal of
Parallel and Distributed Computing, 1997, 47(1): 8-22.

[11] Saha D, Menasce D, Porto S, et al. Static and dynamic
processor scheduling disciplines in heterogeneous parallel
architectures[J]. Journal of Parallel and Distributed Computing,
1995, 28(1): 1-18.

[12] IVerson M A, F O Z, Follen G J. Parallelizing existing
applications in a distributed heterogeneous environment[Z].
[S.l.]: [s.n.], 1995.

[13] Lastovestky A, Reddy R. On performance analysis of
heterogeneous parallel algorithms[J]. Parallel Computing,
2004, 30(11): 1195-1216.

[14] Clematis A, Corana A. Modeling performance of
heterogeneous parallel computing systems[J]. Parallel
Computing, 1999, 25(9): 1131-1145.

[15] Case K E, Fair R C. Principles of microeconomics[M]. [S.l.]:
Pearson Education, 2007.

[16] Mankiw, G N. Principles of economics[M]. [S.l.]: South-Western
Pub, 2011.

Authors: Bai-Da ZHANG and Jun-Jie WU are with the National
laboratory for Parallel and Distributed Processing, School of
Computer, National University of Defense Technology, Changsha
410073, P.R. China. Prof. Yu-Hua TANG is with the Department of
Computer Science and Technology, School of Computer, National
University of Defense Technology, Changsha 410073, China.
Shuai XU is with the Department of Information Engineering,
Academy of Armored Force Engineering, Beijing 100000, P.R.
China
(E-mail: zhangbaida@gmail.com)

