Improvement of Input Power Factor in PWM AC Chopper by Selecting the Optimal Parameters

Abstract. A technique for selecting the element values of the PWM AC chopper circuits to improve the input power factor is presented. This technique analyzes the phase angles of input current, output current and voltage for selecting the optimal value of the filter capacitance. This produces the phase angle of input current in phase with that of input voltage. Therefore, the PWM AC chopper can operate at unity input power factor. The simulation by PSpice program and experimental results are used to verify the proposed technique.

Keywords: Buck, boost, buck-boost AC choppers, capacitor filter, pulse width modulated (PWM) AC chopper, power factor

Słowa kluczowe: chopper PWM AC, optymalizacja, współczynnik mocy

Introduction
To variable AC voltage from fixed AC source, there are three basic techniques that have been widely used in AC power applications such as lighting control, industrial heating, soft start induction motor and speed controller for fans and pumps [1]. The first one is the auto transformer. Its winding ratio is controlled by servo motor or by manual regulation. Although, it offers some advantages such as durability and reliability, it has low voltage regulation speed and large size [2]-[4]. The second technique is the phase angle control. The output voltage average can be controlled by firing angle of thyristor [5]. It has some advantages such as simplicity of the control circuit and capability of controlling a large amount of economical power. However, the delay of firing angle causes discontinuation of power flow to appear at both input and output sides, and significant harmonics in load current. This causes a lagging input power factor \(PF_i \) to occur at the input side, especially, when the firing angle is high.

These problems can be solved by pulse width modulated (PWM) AC chopper technique [6]-[8]. In this technique, the AC line voltage will be chopped by PWM signal controller producing the output voltage. From this process, it produces the input-output current and output voltage to be near sinusoidal. Therefore, its total harmonic distortion \(THD \) is low, and the input power factor, \(PF_i \), is high. Although, the \(PF_i \) of PWM AC chopper technique is higher than that of the phase angle control technique, the \(PF_i \) still depends on the load power factor. When the load power factor is low, the \(PF_i \) will be low as well. This concerned problem can be solved by two ways. The first way is to improve PWM process. The reference and triangular carrier signals were modified to shift the phase angle of output voltage [9]-[14]. This process results the phase angle of input current also shifted. Therefore, the \(PF_i \) is improved. Although, these techniques can improve the \(PF_i \), they are difficult to implement and cause plentiful harmonics in load voltage. The second way is to select the element values of PWM AC chopper circuit. The estimation of the filter capacitance and inductance values by observing the experimental results was proposed [7]. However, this algorithm is difficult to be used in practical circuit design. The selecting the optimal value of the filter capacitance was proposed [15]. However, this technique considered the effect of the filter capacitance value on \(PF_i \) only.

Therefore, this paper proposes the technique for selecting the optimal value of the filter capacitance based on PWM buck, boost and buck-boost AC chopper topologies and also considers its effect on the output voltage ripple. This paper is organized as the following sections. Section 2 presents the fundamental operation of the PWM buck, boost and buck-boost AC chopper topologies. In Section 3, the phase angles of input current, output current and voltage are analyzed. Finally, in this section, we analyze the optimal value of the filter capacitance and show the design step for unity input \(PF_i \).

Section 4 shows the simulation results by PSpice program. Section 5 shows the results by experiment. In the last section, the conclusion is presented.

PWM AC chopper operation
The PWM buck, boost and buck-boost AC chopper power circuits as shown in Fig. 1 consist of input voltage source \(V_i \), inductor \(L \), filter capacitor \(C \) and four power switches. Inductor \(L_f \) and capacitor \(C_f \) is an input filter to absorb high-order harmonic component.

The switching patterns are decided by the polarity of the input/output voltage as shown in Table 1. The switch \(S_1 \) and \(S_2 \) provide the energy storage in inductor and transfer the energy to the output load. While, the switches \(S_3 \) and \(S_4 \) are the freewheeling paths for continuous load current, whereas \(S_1 \) and \(S_2 \), respectively, are in the off-state. In buck topology, when the polarity of input voltage is positive, the switches \(S_2 \) and \(S_4 \) are fully turned on. While, the switch \(S_1 \) is turned on by controlling of the duty cycle, \(D \), for transferring path. The energy from source will be delivered toward the output load. After the switch \(S_1 \) is turned off, the switch \(S_3 \) will be turned on by controlling of \(1 - D \) for freewheeling path. On the other hand, the polarity of input voltage is negative. The switches \(S_1 \) and \(S_3 \) are fully turned on while the switches \(S_2 \) and \(S_4 \) are controlled by \(D \) and \(1 - D \), respectively.

Table 1. PWM patterns of all switches.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>(V_i > 0^*)</th>
<th>(V_i > 0^{**})</th>
<th>(V_i < 0^*)</th>
<th>(V_i < 0^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(S_2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(S_4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^*, \text{buck and buck-boost type}; ^{**}, \text{boost type}\)

In the PWM boost AC chopper, the switching patterns are decided by the polarity of the output voltage. For the...
PWM buck-boost AC chopper, the switching patterns are the same as the PWM buck AC chopper. All switches operate at a fixed switching frequency and a constant duty cycle.

System analysis and calculation

To facilitate the analysis and calculation, the following assumptions were made. All components are assumed ideal. The switching frequency \(f_s \) is much higher than the supply frequency \(f_i \).

Buck type topology

In switching period, the input voltage \(V_i \), the voltage across the capacitor \(C_i \), \(V_c \), and the output voltage \(V_o \) are considered to be constant. When, \(V_i > 0 \), the voltage across the inductor is obtained:

\[
V_L = \begin{cases}
 V_i - V_o & 0 < t < DT \\
 -V_o & DT < t < T
\end{cases}
\]

From Fig. 1a, the voltage across the capacitor \(C_i \) and the input current are found by

\[
\begin{align*}
 V_i(s) &= V_c(s) - sL_i(s) \\
 I_i(s) &= sC_iV_i(s) + DI_i(s)
\end{align*}
\]

Substituting (3) in (2), yields

\[
V_i(s) = \frac{V_i(s) - V_c(s)}{1 + s^2L_iC_i}
\]

In the average model of the switching period, the average voltage of the inductor is given by

\[
V_L(t) = D[V_i(t) - V_o(t)] - (1 - D)V_o(t)
\]

where \(V_i(t) \) and \(V_o(t) \) are the average input and output voltage respectively, and \(D \) is the duty ratio. When the input and output voltage are induced on the inductor by PWM switches in the high frequency switching, it is possible to estimate the average inductor voltage expressed as:

\[
V_L(t) = L \frac{di_L(t)}{dt}
\]

From Equations (5) and (6), the following relation is obtained:

\[
DV_L(t) = L \frac{di_L(t)}{dt} + V_o(t)
\]

The equivalent circuit of Equation (7) is shown in Fig. 2. The output filter is used to reduce the output voltage ripple and keep the current continuous conduction. The inductor current ripple \(\Delta I_L \) can be expressed as:

\[
\Delta I_L = \frac{1}{T} [V_{op}(1 - D)]
\]

Therefore, the filter inductance \(L \) used to determine the maximum current ripple can be found by

\[
L = \frac{V_{op}T(1 - D)}{\Delta I_L}
\]

where \(T \) is a switching time. To limit the peak-to-peak value of the output voltage ripple below a certain value \(\Delta V_{op} \), the filter capacitance value must be greater than

\[
c_{min} = \frac{(1 - D)V_{op}}{\Delta V_{op}T^2}
\]

where, \(V_{op} \) is the peak output voltage. From Equation (10), it shows that the filter capacitance value affects the output voltage ripple. In addition, it also affects the PF. In Fig. 2, the equivalent circuit is assumed without the filter capacitor \(C \). Therefore, the inductor current \(i_L \) is equal to the output current \(i_o \). This means that the phase angle of \(i_L \) is in phase with that of \(i_o \). Consequently, the input power factor depends on the load power factor. This assumption is shown in Fig. 3. When the filter capacitor \(C \) is inserted into the circuit, the phase angle of input current \(\theta_i \) will be closely shifted to the phase angle of the input voltage \(\theta_v \). Therefore, the capacitance value impacts the phase angle of input current \(\theta_i \). It causes leading or lagging input power factor.

As previously discussed, it was indicated that the capacitance value affects the output voltage ripple and PF. In some applications, low output voltage ripple may be required. Therefore, the large capacitance value is selected. This causes the PF to be low. While, in some applications, the power factor problem may be concerned. Therefore, the optimal capacitance value should be selected for converter operating at unity input power factor.

From the equivalent circuit of converter, it is assumed without the filter capacitor \(C \) and \(Z \) is the load impedance \((Z = R_L + j \omega C_L) \). Therefore, the transfer function of the output voltage \(V_o(s) \) with respect to the input voltage \(V_i(s) \) is obtained as

\[
\frac{V_o(s)}{V_i(s)} = \frac{b_3}{b_1s^2 + b_2s^2 + b_1s + b_0}
\]

where \(b_3 = (LL_IC_f + L_oC_fC_p), b_2 = R_oC_fC_p, b_1 = (L + L_o + L_fD^2), b_0 = R_o \).

To find the optimal capacitance value, we need to know the difference between the phase angle of input and output voltage. From Equation (11), the phase angle between \(V_o(s) \) and \(V_i(s) \) is obtained as
where \(a_2 = (LL_fC_f + L_oL_fC_f - L_oL_fC_fD), a_1 = (R_oL_fC_f - R_oL_fC_fD), a_0 = (L + L_o + L_fD^2) \)

Boost type topology

In case of the boost AC chopper, the equivalent circuit as shown in Fig. 4 is found by Equation (13).

\[
\theta_{v_{t0}} = \tan^{-1}\omega \left(\frac{L_o}{R_o} \right) - \tan^{-1}\omega \left(\frac{a_2x^2 + a_1x + a_0}{R_o(1-D)} \right)
\]

Optimal capacitance for unity input power factor

Some cases of the applications, the converter operates at fixed load impedance and a constant duty cycle. Therefore, the values of the circuit elements can be selected for unity input power factor. Considering Fig. 6, the input current \(i_I \) is equal to the output current \(i_o \) and the phase angle of input voltage leads that of the output voltage and current with \(\theta_{v_{t0}} \) and \(\theta_{v_{i0}} \), respectively. When, the filter capacitor \(C \) is connected in parallel with the output load. This produces the phase angle of input current \(\theta_{i0} \) shifted to the phase angle of output voltage \(\theta_{v_{t0}} \) by \(l_{C1} \) and then shifted to the phase angle of input voltage \(\theta_{v_{i0}} \) by \(l_{C2} \). Therefore, if the optimal capacitance value is selected resulting the phase angles of the input current and input voltage are in phase. The optimal capacitance value for improving the input power factor can be obtained by

\[
C = C_1 + C_2 = \frac{P \tan \theta_{i0}}{\omega^2_{\text{rms}}} + \frac{P \tan \theta_{v_{t0}}}{\omega^2_{\text{rms}}}
\]

where, \(C_1 \) is the filter capacitor for producing the current \(l_{C1} \), \(C_2 \) is the filter capacitor for producing the current \(l_{C2} \), \(P \) is the real power of load and \(V_{\text{rms}} \) is the root mean square of output voltage.

Designing example

This sub section shows the guideline for designing the PWM buck AC chopper converter. The parameters are shown in Table 2. From this information, we design the converter parameters by the step as follows:

1. The output current is

\[
I_{\text{rms}} = \frac{P}{V_{\text{rms}} \cos \theta} = \frac{1,000}{110 \times 0.8} = 11.36 \ A
\]
Therefore, the inductor current ripple, \(\Delta i_L \), is determined by
\[
\Delta i_L = 0.071 \times 11.36 \times \sqrt{2} = 1.14 \text{ A}
\]

2. The filter inductance and capacitance values are obtained:
\[
L = \frac{\sqrt{\frac{V_i}{T(1-D)}}}{\Delta i_L} = \frac{155 \times 5 \times 10^{-5} \times 0.5}{1.14} = 3.4 \text{ mH}
\]
\[
C_{\text{min}} = \frac{(1-0.5) \times \sqrt{2} \times 110}{8 \times 3.4 \times 10^{-3} \times 1.1 \times (20 \times 10^3)^2} = 6.46 \mu\text{F}
\]

3. The phase angle between \(V_i(s) \) and \(V_o(s) \) using Eq. (12) is
\[
\theta_{V_{io}} = 5.09^\circ
\]

4. Finding the optimal filter capacitance \(C \) using Eq. (21) is obtained as
\[
C = 220 \mu\text{F}
\]

From the designed step, the optimal capacitance value for improving the \(PF_i \) is 220 \(\mu\text{F} \), which is higher than \(C_{\text{min}} \). This shows that it produces the unity \(PF_i \) and forces the output voltage ripple within designed value \(\Delta V_o = 1\% \) (1.1 V). This designed step can be used in other topologies as well.

Table 2. The PWM AC chopper specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Buck</th>
<th>Buck-Boost</th>
<th>Boost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>220 Vrms, 50 Hz</td>
<td>110 Vrms, 50 Hz</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>20 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductor Filter</td>
<td>1 mH</td>
<td>1 mH</td>
<td>-</td>
</tr>
<tr>
<td>Capacitor Filter</td>
<td>1 \mu F</td>
<td>4.7 \mu F</td>
<td>-</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current Ripple</td>
<td>7.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>1000 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.8 Lagging</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulations

To show the feasibility of the proposed analysis method, PSpice program (Student version) was used. The design parameters of PWM AC chopper in the design example are used for simulation. The simulation results are shown in Fig. 7 to 17. Fig. 7 shows the waveforms of load current, output voltage, input current and input voltage in PWM buck AC chopper. From the results, the power factor at supply side is unity.

This is because the optimal capacitance value is selected as shown in Fig. 7a. The total harmonic distortion of output current/voltage is 0.026% and the input current is 0.205%. While, the minimum capacitance value used to meet the maximum output voltage ripple is 6.46 \(\mu\text{F} \) (without the optimal capacitance value). As shown the waveforms in Fig. 7b, the total harmonic distortions of output current/voltage are 0.51% and the input current is 9.316%.

Because of the optimal capacitance value selected, the \(PF_i \) is unity. Therefore, if its value is higher or lower than 220 \(\mu\text{F} \) resulting the lagging or leading input power factor as shown the results in Fig. 8. Figure 9 shows the \(PF_i \) as a function of \(D \). It indicates that \(D \) little affects the optimal capacitance value is used.

Fig. 7. Wave forms of PWM buck AC chopper with: (a) optimal capacitor \((C = 220 \mu\text{F}) \) and (b) without optimal capacitor \((C = 6.46 \mu\text{F}) \).
0.815% and the input current is 6.99%. Figure 14 to 15 show the PF_i as a function of C and D.

Based on the simulation results, the optimal capacitance value can produce the unity PF_i. However, it also affects the output voltage ripple. At low power of resistive load, high output voltage ripple will be appeared at the output side because of small capacitance value used. Assuming that the load power are 100 and 1000 W for buck topology, using the design step of the proposed method, the optimal capacitance values are calculated as $0.25 \mu F$ and $25 \mu F$ respectively. While, the minimum capacitance value used to meet the maximum voltage ripple is $6.46 \mu F$ in case of 100 W. This causes the output voltage ripple is higher than the designed value as shown in Fig. 16a. However, when the load power increased at 1000 W the output voltage ripple is within designed value as shown in Fig. 16b.

Fig. 17 shows the output voltage ripple as a function of D at load power 100 and 1000 W, the optimal capacitance values are 0.25 and $25 \mu F$ respectively. Their results indicate that the D affects the output voltage ripple. To
reduce the output voltage ripple, the capacitance value should be increased. However, this causes the leading P_F_l. Therefore, in designing the converter, the designer should consider the requirement of converter applications.

Some applications require low output voltage ripple, so the large capacitance value should be selected. Some applications are related P_F_l so the optimal capacitance value should be used.

Fig. 17. Output voltage ripple versus duty cycle, D.

Experiment

The experimental results of the PWM buck AC chopper topology are used to show the performance of the proposed technique. The power circuit of the experiment is shown in Fig. 1a. The system parameters used for experiment are as follows: $V_i = 110$ V, $f = 50$ Hz, $f_s = 20$ kHz, $C_f = 1$ μF, $L_f = 1.8$ mH, $D = 0.5$, $R_o = 50$ Ω and $L_o = 220$ mH. Using the designed step of the proposed method, the values of filter inductance is 17.7 mH and the filter capacitance are 7.46 μF (selecting 8 μF) in case of resistive load and 32.09 μF (selecting 30 μF) in case of a resistive-inductive load (RL load). The implemented prototype in the laboratory is shown in Fig. 18.

Fig. 18. Experimental prototype.

Fig. 19 shows the simulation and experimental results in case of RL load. Fig. 19a and 19c show the waveforms of input current and input voltage. While, Fig. 19b and 19d show the waveforms of output current and output voltage. Fig. 20 shows the experimental results in case of resistive load where Fig. 20a shows the simulation results of load current, output voltage, input current and input voltage. While, Fig. 20b shows the experimental results of load current, output voltage, input current and input voltage of the experiment. According to the results, the experimental results are in consistent with the simulations. These results show that the phase angle of input current is in phase with that of input voltage source. Therefore, the power factor at supply side is nearly unity and the output voltage ripple is within the designed value.

Fig. 19. Simulation and experiment results of PWM buck AC chopper (RL load): (a), (c) waveforms of input current and voltage and (b), (d) waveforms of output current and voltage (voltage, 50 V/div, current, 50, 100 mA/div, 5 ms/div).

Fig. 20. Waveforms of input current/voltage and output current/voltage (R load): (a) simulation results and (b) experiment results (voltage, 50 V/div, current, 500 mA/div, 5 ms/div).
Conclusion

In this paper, we proposed the new design technique to obtain the optimal value of the filter capacitance of PWM buck, boost and buck-boost AC chopper circuits for improving the input power factor. This results the phase angle of input current in phase with that of input voltage and the output voltage ripple within designed value. According the simulation and experimental results, we conclude that the filter capacitance value affects the performance of PWM AC chopper as follows:
1. The filter capacitance value affects the P_F_i and output voltage ripple.
2. The optimal value of the filter capacitance can produce the unity P_F_i.
3. If the filter capacitance value is lower or higher than the optimal value, it results leading or lagging P_F_i.
4. The duty cycle little affects the P_F_i if the optimal capacitance value is used.

Acknowledgement

This research is financially supported by Mahasarakham University under grant “Teacher and researcher 2013”.

REFERENCES

Authors: The authors are with the Faculty of Engineering, Mahasarakham University, Thailand and Faculty of Engineering, Rajamangala University of Technology Lanna, Lampang, Thailand
E-mail: apinan.a@msu.ac.th; Asst.Prof. Apinan Aurasopon
E-mail: wanchai_kh@rmutl.ac.th; Asst.Prof. Wanchai Khamsen
The correspondence address is:
E-mail: wanchai_kh@rmutl.ac.th