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Abstract. Today still big challenge in world to find efficient technique for perform recognition on mental tasks, and distinguish between them. This 
allow us to use Brain Computer Interface applications to helps disabled people to interaction with environment and control on external devices.  
 
Streszczenie. Obecnie duze znacznie ma rozpoznawanie aktywności umysłowej dzięki analizie aktywności mózgu. W artykule omówiono interfejs 
komputer-mózg. (Metody klasyfikacji elektroencefalogramu) 
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Introduction 
 Today still big challenge in world to find efficient 
technique for recognition between mental tasks, and 
distinguish between them. This allow us to use Brain 
Computer Interface applications to helps disabled people to 
interaction with environment and control on external 
devices. 
 Electroencephalogram (EEG) represents complex 
irregular signals that may provide information about 
underlying neural activities in the brain [1]. The electrical 
nature of the human nervous system known as that 
variation of the surface potential distribution on the scalp 
that reflects functional activities emerging from the 
underlying brain [2]. This electrical surface potential 
variation can be recorded by affixing set of electrodes on 
the scalp, and measuring the signal between pairs of these 
electrodes after that filtered, amplified, and recorded these 
signals. The resulting data are called the 
Electroencephalograph (EEG) [2]. 
 
Source of EEG Generating  
 The EEG signals define as measurements of the 
currents when flowing during synaptic excitations of the 
dendrites of multiple pyramidal neuro cells in the cerebral 
cortex. When brain cells are activated, the synaptic currents 
are produced within the dendrites. Normally this current 
producing a magnetic field can be measurable by 
electromyogram (EMG) machines and an electrical field 
over the scalp measurable by EEG systems. Basically the 
current in each neuron cell of brain, is produced from 
pumping the positive ions of calcium, sodium, and 
potassium, and negative ions of chlorine, through the 
neuron membranes in the direction governed by the 
membrane potential,  as structure of  neuro cell in figure (1) 
[3]. 

 
Fig. 1 Structure of Neuro Cell [3] 

 
Non-negative Matrix Factorization 

Non-negative Matrix Factorization (NMF) is an emerging 
method with a wide spectrum of applications, such as in 
data analysis, spectrumtry, language modelling, signal and 
image processing, and neurophysiology [4]. It aims to find 
two non-negative matrices whose product can well 

approximate the original matrix, which naturally leads to 
parts-based representation.  
 The standard definition for non-negative matrix 
factorization (NMF) of the matrix ܣ as equation (1) 
 
ܣ  (1) ൌ  ܪܹ
 
where ܣ is ݉	ݔ	݊, ܹ is ݉	ݔ	ܪ ,ݎ is  ݎ	ݔ	݊ , and ݎ	 ൏ 	݉. Both 
ܹ and ܪ must contain only non-negative entries [5]. ܹ is 
basis matrix, each column of which is basis vector, ܪ is 
coefficient matrix, each column of which is new feature 
vector. That leads to dimensional reduction by choose the 
	ݎ ൏ ݉ although it is open problem to decide the optimal ݎ 
[6]. 
 
EEG classification by NMF 
 EEG signal classification or mental task recognition 
introduced by several researchers using various methods 
for analysis complex EEG data raw to understanding this 
complex data. Such as. Liu et al. have used Keirn and 
Aunon EEG data, and applied NMF to decomposition 
magnitude spectra of the EEG signal. Their result reached 
to 98%, and 82% when training and testing data from the 
same day, and different days respectively [6].  Rutkowski, et 
al. they have applied the combining a time-frequency 
representation of EEG signal with NMF. The proposed 
method is applying analysis in the time-frequency domain 
using empirical mode decomposition (EMD) method, then 
applying  NMF to extract hidden non-negative factors, the 
purpose of this method is EEG features extraction and EEG 
patterns analysis [4]. Hyekyoung Lee et al. have 
proposed a method of feature extraction for motor imagery 
single trial EEG classification, they have applied NMF to 
select discriminative features in the time-frequency 
representation of EEG. This method structure of wavelet 
transform pre-processing, feature extraction based on NMF, 
and classification based on probabilistic model, this paper 
confirmed that the data selection scheme improved the 
classification accuracy by 2.14% and the mutual information 
by 0.1127 bit [7]. Hyekyoung Lee et al. they have extension 
their previous work on the use of NMF for EEG 
classification to using Nonnegative Tensor Factorization 
(NTF) for determine discriminative spectral features and 
use the Viterbi algorithm to continuously classify multiple 
mental tasks. They conclude to NTF can find the hidden 
structures for new dimension such as time or class. 
Continuous EEG classification can reduce the restriction of 
EEG experiment since it doesn’t need the trial structure [8]. 
Liu Mingyu et al. they have applied NMF for EEG signal 
processing, to investigate an efficient model for the features 
extraction and classification of EEG signal during different 
attention-level mental tasks. They conclude that NMF lead 
more localized and sparse features than power spectrum 
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method and principal component analysis. It was found that 
the NMF algorithm performs better than other two methods, 
and suitable for EEG signal feature extraction [9]. 
Hyekyoung Lee and Seungjin Choi, have presented 
methods of learning discriminative spectral features from 
large data matrix involving EEG power spectrum because 
the size of a data matrix grows, by Incorporating CUR 
decomposition with NMF that led to downsize the large data 
matrix such that NMF could be applied to compute 
discriminative spectral features. Their Experimental results 
with two EEG data sets in BCI competition, confirm the 
useful behavior of the proposed method [10].  Hyekyoung 
Lee et al. they have applied Kernel  NMF to extract 
discriminative spectral features from the time-frequency 
representation of  EEG data, their method was successful 
for apply KNMF to task of learning discriminative spectral 
feature from EEG data for classification, the experiments on 
two benchmark EEG datasets confirmed the performance 
gain over standard NMF [11]. 
 Hyekyoung Lee, and Seungjin Choi, have presented 
Group NMF (GNMF) for analyze EEG data of multiple 
subjects. They have compared GNMF with NMF and some 
modified NMFs, in the task of learning spectral features 
from EEG data, the experiments on brain computer 
interface (BCI) competition data indicate that GNMF 
improves the EEG classification performance [12]. Phan 
and Cichocki, they have proposed a new fast non-negative 
tensor factorization (NTF) algorithm which factorizes the 
approximate tensor obtained from the Parallel factor 
analysis (PARAFAC). The proposed algorithm have been 
high performance that confirmed even for noisy data, and 
the large scale EEG benchmark, it is fast comparing with 
other existing NTF algorithms [13]. 
 Lee et al. they have presented a semi-supervised 
version of NMF (SSNMF) which jointly exploited both 
(partial) labeled and unlabeled data to extract more 
discriminative features than the standard NMF. Their 
experiments on EEG datasets in BCI competition confirm 
that SSNMF improves clustering as well as classification 
performance, compared to the standard NMF [14]. Shin et 
al. have proposed new method generative model of a group 
EEG analysis, based on appropriate kernel assumptions on 
EEG data. Their proposed models find common patterns for 
a specific task class across all subjects as well as individual 
patterns that capture intra-subject variability. The validity of 
the proposed method have been tested on the BCI 
competition EEG dataset [15]. 
 Dohnalek et al. have proposed method for signal pattern 
matching based on NMF, also they used short-time Fourier 
transform to preprocess EEG data and Cosine Similarity 
Measure to perform query-based classification. This method 
of creating a BCI capable of real-time pattern recognition in 
brainwaves using a low cost hardware, with very cost 
efficient way of solving the problem [16]. 
 
EEG and Lempel-Ziv complexity 
 Abasolo et al. have investigated the EEG background 
activity in patients with Alzheimer’s disease using non-linear 
analysis methods – Lempel-Ziv (LZ) complexity and 
computation of the central tendency measure (CTM) of the 
EEG [17]. 
 The Lempel–Ziv (LZ) complexity for sequences of finite 
length was suggested by Lempel and Ziv [18]. It is a 
nonparametric, simple-to-calculate measure of complexity 
in a one-dimensional signal that does not require long data 
segments to compute [19]. LZ complexity is related to the 
number of distinct substrings and the rate of their 
recurrence along the given sequence [20], with larger 
values corresponding to more complexity in the data. It has 

been applied to study the brain function [21], brain 
information transmission [22] and to detect ventricular 
tachycardia and fibrillation [19]. Preliminary evidence 
suggests that, applied to EEGs, LZ complexity is predictive 
of epileptic seizures [20] and can be useful to quantify the 
depth of anaesthesia [23,24]. Moreover, it has been applied 
to extract complexity from mutual information time series of 
EEGs in order to predict response during isoflurane 
anaesthesia with artificial neural networks [25]. 
 LZ complexity analysis is based on a coarse-graining of 
the measurements, so before calculating the complexity 
measure ܿሺ݊ሻ, the signal must be transformed into a finite 
symbol sequence. In this study we have used following 
sequence conversion methods: 

1. 0-1sequence conversion 
The median value is estimated as a threshold ௗܶ. By 
comparison measured signal data value with ௗܶ, the 
signal data are converted into a 0-1 sequence ܲ ൌ
,ሺ1ሻݏ ,ሺ2ሻݏ ,ሺ3ሻݏ …,ሺ4ሻݏ ,  ሺ݊ሻ, where ݊ is length of signalݏ
data sequence and defined ݏሺ݅ሻ by formula (2): 

 

ሺ݅ሻݏ  (2) ൌ ൜
0	if	ݔሺ݅ሻ ൏ ௗܶ
1	if	ݔሺ݅ሻ ൑ ௗܶ

 

 
2. 0-1-2 sequence conversion 
For each EEG segment, the median ݔ௠, maximum 
 ௠௜௡ are calculated. Afterݔ ௠௔௫ and minimumݔ
calculation the maximum, minimum and median value 
we set two threshold values. ௗܶଵ ൌ ௠ݔ െ  ௠௜௡|/16 andݔ|
ௗܶଶ ൌ ௠ݔ ൅  ௠௜௡|/16. Then the EEG data convertedݔ|

into a 0-1-2 sequence ܲ ൌ ,ሺ1ሻݏ
,ሺ2ሻݏ ,ሺ3ሻݏ ,ሺ4ሻݏ … ,  ሺ݅ሻ defined in followingݏ ሺ݊ሻ, withݏ
formula (3): 

 

ሺ݅ሻݏ (3) ൌ ቐ
0	if	ݔሺ݅ሻ ൏ ௗܶଵ

1	if	ݔሺ݅ሻ ൏ ௗܶଶ

2	if	ݔሺ݅ሻ ൒ ௗܶଶ

 

 
 The sequence P is scanned from left to right and the 
complexity counter ܿሺ݊ሻ is increased by one unit every time 
a new subsequence of consecutive characters is 
encountered. The complexity measure can be estimated 
using algorithm [19,23,24]: 
1. Let ܵ and ܳ denote two subsequences of ܲ and ܵܳ be 

the concatenation of ܵ and ܳ, while sequence ܵܳߨ is 
derived from ܵܳ after its last character is deleted (ߨ 
means the operation to delete the last character in the 
sequence). Let ݒሺܵܳߨሻ denote the vocabulary of all 
different subsequences of ܵܳߨ. At the beginning, 
ܿሺ݊ሻ 	ൌ 	1, ܵ	 ൌ 	ܳ ,ሺ1ሻݏ	 ൌ 	ߨܳܵ ,ሺ2ሻ, thereforeݏ	 ൌ
 .ሺ1ሻݏ	

2. In general, ܵ	 ൌ 	ܳ ,ሻݎሺݏ ,… ,ሺ2ሻݏ ,ሺ1ሻݏ	 ൌ 	ݎሺݏ	 ൅ 	1ሻ, 
then ܵܳߨ	 ൌ ,ሺ1ሻݏ	 …,ሺ2ሻݏ ,  ,ሻߨሺܵܳݒ ሻ; if ܳ belongs toݎሺݏ
then ܳ is a subsequence of ܵܳߨ, not a new sequence. 

3. Renew ܳ to be ݏሺݎ	 ൅ 	1ሻ, ݏሺݎ	 ൅ 	2ሻ and judge if ܳ 
belongs to ݒሺܵܳߨሻ or not. 

4. Repeat the previous steps until ܳ does not belong to 
	ܳ ሻ. Nowߨሺܵܳݒ ൌ 	ݎሺݏ	 ൅ 	1ሻ, ݏሺݎ	 ൅ 	2ሻ, …, ݏሺݎ	 ൅ 	݅ሻ is 
not a subsequence of ܵܳߨ	 ൌ 	ݎሺݏ ,… ,ሺ2ሻݏ ,ሺ1ሻݏ	 ൅ 	݅	 െ
	1ሻ, so increase ܿሺ݊ሻ by one. 

5. Thereafter, ܵ is renewed to be ܵ	 ൌ  ,… ,ሺ2ሻݏ ,ሺ1ሻݏ	
	ݎሺݏ ൅ 	݅ሻ, and ܳ	 ൌ 	ݎሺݏ	 ൅ 	݅	 ൅ 	1ሻ. 
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 These procedures have to be repeated until ܳ is the last 
character. At this time the number of different 
subsequences in P – the measure of complexity – is ܿሺ݊ሻ. 
 In order to obtain a complexity measure ܿሺ݊ሻ which is 
independent of the sequence length. ܿሺ݊ሻ should be 
normalized. If the length of the sequence is ݊ and the 
number of different symbols in the symbol set is ߙ, it has 
been proved [18] that the upper bound of ܿሺ݊ሻ is defined in 
[18]. 
 In general, ݊/log	ሺ݊ሻ is the upper bound of ܿሺ݊ሻ, where 
the base of the logarithm is ߙ, 
 
(4)  lim௡→ஶ ܿሺ݊ሻ ൌ ܾሺ݊ሻ ൌ

௡

௟௢௚ഀሺ୬ሻ
 

 
and ܿሺ݊ሻ can  be normalized via ܾሺ݊ሻ: 
 

ሺ݊ሻܥ  (5) ൌ
௖ሺ௡ሻ	

௕ሺ௡ሻ	
 

 
 ሺ݊ሻ, the normalized LZ complexity, reflects arising rate ofܥ
new patterns along with the sequence. Thus, it captures the 
temporal structure of the sequence [17,18]. 
 
EEG, Turtle Graphics Commands and Lempel-Ziv 
complexity  
 In our experiment we used a different EEG data 
conversion method. We converted EEG data segments with 
turtle graphic into commands [26,27] represented by a 
single character. Each character present one direction 
angle of EEG data curve, created from measured data (Fig. 
2). This angle is calculated between two values. 
 In our experiment we do not deal with ܿሺ݊ሻ measure of 
the complexity. From the individual EEG data sequences 
after conversion we create a list of LZ subsequences. One 
subsequence list is created for each data segment. 
 

 

Fig. 2 Data conversion [28] 

 The comparison of the LZ sequence lists is the main 
task. The lists are compared to each other. The main 
property for comparison is the number of common 
sequences in both compared lists. This number is 
represented by the sc parameter in the following formula (6), 
which is a metric of similarity between two turtle commands 
lists after using LZ complexity. 
 
ܯܵ (6) ൌ

௦௖

୫୧୬	ሺ௖భ,௖మሻ
 

 
Where: ܿݏ - count of common LZ sequences in both 
sequence segments, ܿଵ, ܿଶ - count of LZ sequences in first 
second segment. 
 The SM value is in the interval between 0 and 1. If 
ܯܵ ൌ 1, then the documents are equal, have many common 
LZ sequences, and they have the highest difference when 
the result value of ܵܯ ൌ 0, they have a few common LZ 
sequences [28].  
 
Experiment Results   
 We made similarity between the EEG trials for left hand 
back movement and imaging left hand back movement 
task. Our results are listing in the Table 1, the maximum 
similarity results of mental tasks by our method reach to 

100.00%, minimum similarity was 30.00% and average 
value of similarity was 52.36%.  Our model reached 
accuracy up to 52.63%. 
Table 1. Similarity results.  
 Minimum Maximum Average 
Correctly identified 30.00% 100.00% 52.63% 
Incorrectly identified 0.00% 70.00% 47.37% 
True positive rate 0.00% 100.0% 35.53% 
False positive rate 0.00% 100.0% 55.26% 
Accuracy 30.00% 100.00% 52.63% 
 
On Figure 3 we can see accuracy for sensor. The most 
accuracy values are between 40% and 60%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Sensors accuracy 

 
Conclusion 
 We made our experiments on EEG signals from one 
subject performing left hand back movement task in three 
trials, and other trial for imaging left hand back movement, 
we applied FFT to EEG data, removing high frequencies, 
applied Invers FFT, represent EEG data by turtles graphics, 
then finding the maximum similarity between these trials by 
LZ compression. The experiment results on EEG data 
showed the maximum similarity results of mental tasks by 
our method reach to 100%, minimum similarity was 30.00% 
and average value of similarity was 52.36%.  Our model 
reached accuracy up to 52.63%. In future work we will try to 
collect EEG data using Emotiv EEG neuro headset, and 
use this data to find similarity between mental tasks by our 
proposed method to analysis and recognition on mental 
tasks. 
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