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activity recognition 

 
 

Abstract. In this paper, custom modifications of Orthogonal Matching Pursuit and Self Organizing Maps based classification algorithms are used 
and compared to standard and widely used classification techniques with applications to human activity recognition. Seven algorithms are compared 
in terms of their accuracy performance. The modifications are described in this paper and shown to perform better than commonly used classifiers.  
The results indicate that human activities can be successfully and reliably recognized even without data preprocessing. 
  
Streszczenie. W artykule opisano klasyczne i rzadziej używane metody klasyfikacji danych używanych do rozpoznawania aktywności człowieka. Po 
równano szereg algorytmów oraz zmodyfikowano algorytm OMP w celu usunięcia ograniczeń. (Przegląd metod klasyfikacji danych używanych 
do rozpoznawania aktywności człowieka) 
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Introduction 
Human activity recognition is one of the more recent 

research topics that recently gained on popularity and focus 
of both academic and commercial researchers. Since 
human activity monitoring has a broad range of 
applications, like homecare systems, prisoner monitoring, 
physical therapy and rehabilitation, public security, military 
uses and others, motivation to create a reliable human 
activity recognition system is great. 

Generally, approaches to recognizing activities can be 
divided into two groups - sensor-based and vision-based. 
Sensor-based systems use various sensors that are 
attached to the subject being monitored. Vision-based 
activity recognition systems, on the other hand, try to 
eliminate the need for sensors and attempt to recognize 
subject's behavior from images and video sequences. Both 
approaches have their challenges arising from their nature. 
While sensor-based systems require classification 
algorithms to be as speedy as possible in order to be 
implemented in low-power wearable devices, accurate and 
reliable vision-based systems are still a challenge no matter 
the computation power. This paper focuses on sensor-
based systems, one of which was used to create the 
Physical Activity Monitoring for Aging People (PAMAP2) 
dataset that this paper elaborates on.  

 
Current approaches in activity recognition 

In general, in activity recognition authors attempt to 
recognize static states (lying, sitting, standing, etc.), 
dynamic states (walking, running, etc.) and/or transition 
states (i.e. standing to walking). Data preprocessing to 
improve the classification accuracy is common [1, 2, 3]. 
Classification methods currently widely used in the area are 
based both on classic algorithms like the Classification And 
Regression Tree (CART) [4, 5] or k-Nearest Neighbor (k-
NN) [6, 7] and more advanced techniques like the Adaptive 
Network based Fuzzy Interference System (ANFIS) [8, 9], 
Iterative Dichotomiser 3 (ID3) [10] and others. 
 

Classifiers being evaluated 
To provide an overview of learning algorithms with 

application to human activity recognition, five distinct 
classifiers were tested, including the above mentioned k-NN 
and CART. Also, the Orthogonal Matching Pursuit (OMP) 
based classifier as defined in [11] was evaluated against a 
custom modification that significantly improves the reliability 
of the recognition. Global-Merged Self Organizing Maps 
(GM-SOM) [12, 13] were also used. The following 
subsections provide a brief informal description for each of 

the classifiers with the exception of OMP which is explained 
in more detail in its own section. 
 
k-Nearest Neighbors 

k-NN is a non-parametric algorithm, meaning that it 
makes no assumptions about the structure or distribution of 
the underlying data, thus being suitable for real-world 
problems that usually do not follow the theoretical models 
exactly. The method is also considered to be a lazy learning 
algorithm as it performs little to no training during 
computation. As a result, the method uses the whole 
training dataset during classification. k-NN is well known for 
its simplicity, speed and generally good classification results 
in applications like bioinformatics [14], image processing 
[15], audio processing [16] and many others [17, 18]. 

 
Classification and Regression Tree 

This algorithm classifies a sample according to groups 
of other samples with similar properties. During training, the 
training data is continuously divided into smaller subsets 
(tree nodes). When the divisions are finished, the samples 
are clustered together according to their properties. Testing 
samples are then evaluated against certain conditions in 
each node and propagated throughout the tree. When the 
sample reaches a leaf node, it is then assigned the class to 
which the samples in that node belong. In this paper, a 
binary tree with logical conditions was used. CARTs are still 
under extensive research and can be used as a standalone 
classifier [19] or as part of larger algorithmic structures [20]. 
 
Global Merged Self Organizing Maps 

The following text is focused on the description of our 
method first introduced in [12] which leads to results similar 
to the classic Self Organizing Maps (SOM). Named Global-
Merged SOM, it divides computation into independent parts, 
similarly to parallel SOM [13], which are then merged to 
obtain the expected result. Following steps describe the 
whole process of GM-SOM:  
1. Input set split – the set of input vectors is divided into a 
pre-defined number of parts. The precision of GM-SOM 
increases with the increasing number of parts, although this 
has its own disadvantages related to larger set of vectors in 
the final phase of the computation process. The number of 
parts can be usually determined from the number of input 
vectors. Generally, k >> N * p, where k is the number of 
input vectors, N is the number of neurons and p is the 
number of parts. 
2. Computation in individual parts – classic SOM is 
applied on each part (we will label it PSOM in further text). 
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All PSOMs start with the same setting (the first distribution 
of weight vectors, number of neurons, etc.). Such division 
speeds up the parallel computation of PSOMs when using 
GPU. Also, the number of epochs can be lower than the 
number of epochs for processing the input set by a single 
SOM. This is represented by a factor f. 
3. Merging the individual parts – weight vectors which 
were computed for each part (and correspond to neurons 
with at least one hit) are used as input vectors in the final 
phase of GM-SOM. A merged SOM with the same setting is 
computed and output weight vectors make the final result of 
the GM-SOM method. 
 

Table 1. Recognition accuracy for each of the classifiers 
  Training set size (%) 

Classifier  10 20 30 40 50
OMP2 98.27 99.14 99.56 99.43 99.60
3-NN 97.51 98.72 99.31 99.29 99.54 
CART 97.87 98.49 99.15 99.11 99.37 
OMP 95.85 97.56 98.29 98.39 98.77 

GM-SOM 87.23 88.09 90.35 89.67 91,86 
 

Individual parts are fully independent on each other and 
they update different PSOMs. Also, different SOM 
algorithms can be applied on PSOM of a given part, which 
makes the algorithm more variable. Since different settings 
of PSOMs can be used, a denser neuron network can be 
used in case of the input set is larger. 

 

Orthogonal Matching Pursuit 
Well described in [24], OMP is an iterative sparse 

approximation algorithm that reduces data into a given 
number of sparse coefficients and thus can be considered a 
dimensionality reduction algorithm. Given an overcomplete 
dictionary of observations, for each observation to be 
classified OMP picks a number of the best fitting 
observations from the dictionary and uses them to compute 
the sparse coefficients. Those are then checked against the 
dictionary itself for similarity and classified. 

The dictionary can be represented as an m × n real-
valued matrix A, where m is the length of an observation 
and n is the number of observations in the dictionary 
(training observations). The iterative nature of the algorithm 
allows for sparse coefficient number to be chosen in 
advance. It stands to reason to limit the number of sparse 
coefficients s such that s ≤ m, although the number can be 
truly limited only by the number of training observations, n. 

Originally, the classifier proposed in [11] requires n = t × 
c, where t is the number of training observations for a given 
class and c is the number of classes. This means the 
algorithm requires the training set to contain the same 
number of training observations for each class. It is also 
necessary to keep the observations of a given class 
grouped together. Therefore, the training matrix has the 
form of A = [a11, a21, …, at1, a12, …, atc], where aij, i = 1..t, j = 1..c 
is the i-th training observation of class j and length m. 

The proposed modification changes the meaning of t 
and the resulting number of observations in the dictionary. 
Here, 
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where t is the c-dimensional vector consisting of numbers of 
training observations for a given class. By this, the limitation 
imposed on the number of training samples in the original 
classification approach is lifted. The sparse coefficients are 
obtained by finding the sparse solution to the equation 
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where y ∈ Թm is the query vector, A ∈ Թm×n is the training 
matrix and s ∈	 Թn is the sparse coefficient vector. The 

stopping criterion in the implementation is reaching the 
sparse coefficient vector with the desired number of non-
zero values. 
 
Classification 

To classify the query signal vector, a strategy of 
computing the residual value from the difference between 
the query vector and its sparse representation converted 
into the vector space of the training matrix vectors is 
employed. This is performed for each class resulting in c 
residuals. The classification is then based on the minimum 
residual. Formally, the classification problem can be stated 
as follows: 

 

(3) 2arg min ( ) || - ||k kr y y As   
   

Here, sk is an n-dimensional vector with non-zero elements 
located only on indices corresponding to the kth class in the 
training matrix, hence the need for the training observations 
of a given class to be grouped together in the matrix. The 
algorithm could be described with the following steps: 
 Set the iteration variable i to 1 
 Replace all sparse coefficients not belonging to class i 
with zeros 
 Multiply the training matrix by the modified vector s 
 Compute the ℓ2-norm of the resulting vector 
 Increase i by 1 and repeat for all classes 
 Output the class whose ℓ2-norm is the lowest 
Computing the residuals is generally not computationally 
expensive and can be performed in real time, depending on 
the size of the training matrices. Only very large training 
matrices can slow the process down significantly. 
 

Experiments 
The following section describes the dataset used to 

evaluate the performance of the classifiers as well as the 
process of the evaluation and its results. 

 
The PAMAP2 dataset 

The PAMAP2 dataset contains data of nine healthy 
human subjects, each subject wearing three inertial 
measurement units (IMUs) by Trivisio, Germany and a heart 
rate monitor. Each of the three IMUs measures temperature 
and 3D data from accelerometer, gyroscope and 
magnetometer. The data is sampled at 100 Hz and 
transmitted to PC via a 2.4 GHz wireless network. Subjects 
wore one IMU on the dominant wrist, one on the dominant 
ankle and one on the chest. Detailed information on the 
dataset can be found in [25] and [26].  

The methods have been tested on all 9 test subjects in 
the dataset, labeled in the dataset as subject101 through 
subject109. Data of all these subjects consists of 2872532 
measurements, each containing 54 values. The description 
of the values is available in the dataset documentation. 
Some values can be missing, indicated with a NaN (Not a 
Number) value. Every NaN value was replaced with a zero. 

The activities performed are lying, sitting, standing, 
walking, running, cycling, Nordic walking, ascending stairs, 
descending stairs, vacuum cleaning, ironing and rope 
jumping. Transition activities were discarded. Since some 
measurements contain only NaN values, these 
measurements were discarded as well. In total, 1942746 
activity measurements were used. From each 
measurement, irrelevant values, that is the orientation of 
each IMU and timestamp, were removed. Since most heart-
rate values were NaNs due to different operating frequency, 
they were also removed. As a result, each measurement 
contains 39 values. These values were not preprocessed 
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any further, the classifiers were tested on raw sensor data 
as provided by the PAMAP2 dataset. 

 
Table 2. Classification accuracy with regards to individual actions 
(30% training set) 

 Classifier 
Action  OMP2 kNN CART OMP GM-SOM

lying  100 100 99.80 100 93.21
sitting  100 99.83 98.90 99.66 89.84 

standing  99.75 99.75 99.63 99.63 89.17 
walking  99.27 99.02 99.27 95.36 84.95 
running  99.86 98.56 99.0 99.71 86.84 
cycling  99.78 100 99.57 98.92 89.64 

N. walk.  98.54 97.97 99.92 95.54 83.43 
asc.stair  98.81 99.15 97.46 97.63 84.11 

des.stairs  99.56 99.12 96.70 96.70 83.62 
vacuum  100 99.90 98.89 99.20 84.28 
ironing  99.57 99.46 99.46 99.14 87.47 

rope  100 99.32 99.55 100 79.54 

 
Experimental settings 

The execution of some of the algorithms can be 
customized through execution parameters which, for these 
experiments, were set according to the best empirical 
speed/accuracy ratio. The k-NN algorithm's k parameter 
was set to 3. The number of sparse coefficients s computed 
by OMP was 10. For CART, default MATLAB settings were 
used. GM-SOM was set to compute an 8 × 8 network, 100 
epochs and 10 parts. All of the algorithms were 
implemented in the latest version of MATLAB. The entire 
dataset was divided into a training and a testing set. 
Experiments were performed on 5 different settings where 
the training set was a 10%, 20%, 30%, 40% or 50% portion 
of the dataset. 

Given the significant time complexity of some of the 
classifiers, finishing the experiments could take up to 
several hours, greatly depending on the size of the training 
set. For this reason, the number of observations used in the 
testing phase of a run was limited to 10000. As all compared 
classifiers are purely deterministic, it was sufficient to run 
the experiment with each setting only once. 

 
Results 

The classification accuracies given as percentual 
success rates are shown in Table 1 where the classifiers 
are sorted according to their success in the descending 
order. It can be seen that in almost every case the modified 
version of the OMP classifier (OMP2) is superior to the 
other classifiers, the exception being the 10% training set 
where CART performs better. For training set sizes of 30% 
and higher, OMP2 becomes very closely followed by k-NN 
which is, in turn, only slightly better than CART. The original 
OMP, while providing satisfactory results, was at the bottom 
of the table along with GM-SOM. At 10% training set, the 
difference between OMP and OMP2 was the most 
significant at 2.42%. When the training set size was set to 
50%, all methods with the exception of GM-SOM provided 
very accurate recognitions. 

While GM-SOM provided the worst recognition 
accuracy, it was the fastest classifiers in terms of classifying 
test vectors, once again proving that speed and accuracy 
are often two sides of a single scale. While the OMP or 
CART experiments took minutes to hours to classify the test 
vectors, GM-SOM is capable of making the classification 
within seconds. The most time consuming part of GM-SOM 
is training the classifier. 

How accuracy is dependent on the training set can be 
seen in Figure 1. The experiments show that the increase of 
training set size does indeed benefit the recognition 
accuracy. Since the experiments show that 30% can 
provide very satisfactory results, it is reasonable to consider 
this training set size a good compromise between speed 

and accuracy. For this reason, Table 2 elaborates on the 
results for this training set size. It shows the percentual 
success rates for each classifier with regards to each of the 
actions to be recognized. Lying and sitting came out as 
activities fairly easy to recognize with any of the evaluated 
classifiers while distinguishing Nordic walking was a task a 
bit more difficult to the classifiers. This is to be expected 
due to the similarity of Nordic walking to simple walking. 
Still, the classifiers performed very well in recognizing every 
activity when OMP2's worst result was misclassifying only 
1.46% of total Nordic walking observations. k-NN managed 
to drop below 99% only in a single activity. CART provided 
fairly consistent and satisfactory results, although 2.86% 
deficiency in descending stairs against OMP2 becomes 
noteworthy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Accuracy dependency on the size of the training set  
 

Conclusion 
This paper evaluated several classification techniques 

and presented their success rates in human activity 
recognition without any prior preprocessing. Given the 
sensor technology that was used to create the PAMAP2 
dataset, it was shown that activities performed in the 
database can be recognized reliably and with very high 
precision. In terms of recognition accuracy, the presented 
modification of the OMP classifier was shown to perform the 
best, however the precision comes at the price of significant 
time complexity. The fastest of the algorithms in the 
classification phase was GM-SOM, but its recognition 
accuracy is slightly lower, albeit still reasonably high 
enough for practical use. From the speed/accuracy ratio 
perspective, k-NN seems to be the most reasonable choice 
as its accuracy performance is superseded by OMP2 only 
closely, but k-NN has a significant edge in computation 
times. For this reason, the main focus of future work in this 
area should be making the classifiers more efficient or 
finding a suitable preprocessing technique that would 
enable high-speed classifiers to provide comparable results. 
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