Probabilistic properties of sinusoidal signal autocorrelation function

Abstract. The paper concerns issues of probabilistic properties of the sinusoidal signal autocorrelation function. An autocorrelation function can be viewed as a random variable with fixed probability density. In the paper, results of the research on parameters of such a variable are presented. On the basis of the probability density function, the mean, the mean-square and the variance of the random variable have been determined.

Keywords: autocorrelation function, mean, variance, arcsine distribution
Słowa kluczowe: funkcja autokorelacji, wartość oczekiwana, wariancja, rozkład arcsin

Introduction
In the paper, probabilistic properties of the sinusoidal signal autocorrelation function have been investigated. An autocorrelation function can be presented in the form of a random variable with a fixed probability density distribution. Based on a finite set of observations, it is possible to only estimate the random variable distribution parameters of interest. Therefore, in order to find out the real values of the random variable distribution parameters, or, in short, random variable parameters, such values are determined based on a probability density function. Random variable parameters are quantities characterizing the values which a random variable can assume. The authors have determined such parameters as the mean, the mean-square, as well as the variance of a random variable.

Sinusoidal signal autocorrelation function
The autocorrelation function of a periodic and ergodic signal $x(t)$, continuous over the time $t \in \mathbb{R}$, is defined as follows [1, 2]:

$$R_x(t) = \frac{1}{T} \int_0^T x(t) x(t+\tau) \, dt,$$

where $T \in \mathbb{R}$ is the period, $\tau \in \mathbb{R}$ is the delay of the signal $x(t)$.

Let $x(t)$ be a signal described by the formula:

$$x(t) = A_0 + A \sin \left(\frac{2\pi}{T} t + \phi \right),$$

where $A \in \mathbb{R}$ is the amplitude, $A_0 \in \mathbb{R}$ is the permanent component, $\phi \in \mathbb{R}$ is the initial phase of the signal $x(t)$.

On the basis of formulae (1) and (2) we obtain [1, 2] (Fig. 1):

$$R_x(t) = A_0^2 + \frac{A^2}{2} \cos \left(\frac{2\pi}{T} \tau \right).$$

(3)

Note that quantity (3) makes it possible to determine the mean-square of signal (2). Setting $\tau = t_0 = 0$, we obtain $R_{x0}(t_0) = A_0^2 + A^2/2$.

Probabilistic properties of sinusoidal signal autocorrelation function
The autocorrelation function $R_{x0}(\tau)$ of signal (2) assumes values from the interval $[-A^2/2 + A_0^2, A^2/2 + A_0^2]$. If we assume that $R_{x0}(\tau)$ is a random variable, then $R_{x0}(\tau)$ has arcsine distribution over the given interval. The probability distribution function of the random variable $R_{x0}(\tau)$ has the form (Fig. 1):

$$f_{R_{x0}}(r) = \begin{cases}
\frac{1}{\pi} \sqrt{\frac{A^2}{4} - (r - A_0^2)^2}, & r - A_0^2 < \frac{A^2}{2}, \\
0, & |r - A_0^2| \geq \frac{A^2}{2}.
\end{cases}$$

(4)

The cumulative distribution function of the random variable $R_{x0}(\tau)$ is determined based on the formula:

$$F_{R_{x0}}(r) = \frac{r}{\pi} \arcsin \left(\frac{\sqrt{\frac{A_0^2 + 1}{2}} - \sqrt{A_0^2 + 1}}{A_0^2} \right),$$

$$F_{R_{x0}}(r) = \begin{cases}
\frac{2}{\pi} \arcsin \left(\frac{\sqrt{\frac{A_0^2 + 1}{2}} - \sqrt{A_0^2 + 1}}{A_0^2} \right), & |r - A_0^2| < \frac{A^2}{2}, \\
0, & |r - A_0^2| \geq \frac{A^2}{2},
\end{cases}$$

(5)

whereas the inverse cumulative distribution function of the random variable $R_{x0}(\tau)$ according to the relationship (Fig. 2):

$$F^{-1}_{R_{x0}}(r) = \begin{cases}
A_0^2 - \frac{A^2}{2} \cos (\pi r), & 0 \leq r \leq 1, \\
0, & r < 0 \lor r > 1.
\end{cases}$$

(6)

Fig. 1. An the autocorrelation function $R_{x0}(\tau)$ and the probability density function $f_{R_{x0}}(r)$
In practice, a distribution function is a more effective tool to investigate probability than a density function. This is the case because simpler mathematical apparatus is required to describe a distribution function. An inverse distribution function is often determined in order to design, by means of a method of uniform distribution transformation, a random number generator with a specific probability distribution [3].

A method of uniform distribution transformation, a random function is often determined in order to design, by means of a graphical representation of the autocorrelation function. This information concerns, among others, the energy-related parameters in time domain (the mean value, the mean square, the root-mean square) and in the frequency domain (power spectrum) [1].

Let us consider the following three measurement setups in which the frequency \(f_i \) of the signal \(x(t) \) depends on the trigger frequency \(f_s \) in the following ways:

\[
\begin{align*}
\text{if } f_w > f_s & \rightarrow T_w = T_s, \\
\text{if } f_w = f_s & \rightarrow T_w = T_s, \\
\text{if } f_w < f_s & \rightarrow T_w = T_s,
\end{align*}
\]

where \(T_w \) is the trigger period.

Let us assume that the signal \(x(t) \) has been sampled with the frequency \(f_s = M f_w \) and the initial phase \(\varphi = 0 \) so that:

\[
x[i] = x[iT_p] = A_0 + A \sin \left(2\pi \frac{f_i}{M f_w} i \right), \quad i = 0, 1, ..., 2M - 1,
\]

where \(T_p \) is the sampling period, \(M \) is the number of samples per \(T_p \).

In each situation the following estimator of the \(R_{x0}(\tau) \) function has been constructed [1], [2]:

\[
R_{x[i]}[k] = \frac{1}{M} \sum_{i=0}^{M-1} x[i] x[i+k], \quad k = 0, 1, ..., M - 1,
\]

and the parameter estimation error has been evaluated as (7)-(9):

\[
\delta_0 = \left| \hat{\theta} - \theta \right| \times 100 \%.
\]

where \(\hat{\theta} \) is the true value of the parameter, \(\theta \) is the value of the estimator of the parameter, evaluated with the use of samples of the autocorrelation. The estimators have been calculated with formulas which are widely known from the literature [1]-[4].

Since formula (10) allows to calculate a \(k \)th order moment of the random variable only to a limited extent, the authors, making use of the results presented in the works [6, 7], have derived the formula:

\[
E\left[R_{x(i)}(\tau)\right] = A_0^k + \frac{1}{8} A_0^4,
\]

\[
E\left[R_{x(i)}(\tau)^2\right] = A_0^2 + \frac{3}{8} A_0 A_0^4 + \frac{3}{128} A_0^8,
\]

\[
:\ldots
\]

\[
E\left[R_{x(i)}(\tau)^8\right] = A_0^8 + \sum_{i=0}^{k} (i - 1) \left[\frac{1}{2} \left(i - 1 \right) \left(1 + (-1)^i \right) \right] A_0^2 A_0^{8+k-i} + \frac{1}{4} A_0^8,
\]

which makes it possible to determine a \(k \)th order moment without setting initial conditions concerning the parameters of signal (2).

Verification of the theoretical results

The results obtained above allow us to estimate the information content of the autocorrelation which is a graphical representation of the autocorrelation function. This information concerns, among others, the energy-related parameters in time domain (the mean value, the mean square, the root-mean square) and in the frequency domain (power spectrum) [1].

The variance of the random variable \(R_{x0}(\tau) \) is determined based on the formula:

\[
Var\left[R_{x(i)}(\tau)\right] = E\left[R_{x(i)}(\tau)^2\right] - E^2\left[R_{x(i)}(\tau)\right] = \frac{1}{8} A_0^4.
\]

Quantities (7) and (8), respectively, are ordinary moments of the first and the second order, whereas quantity (9) is the second central moment [3].

Analogously, we can determine a formula for calculating an ordinary \(k \)th, \(k \in \mathbb{N}\setminus\{0\} \), order moment of the random variable \(R_{x0}(\tau) \). If \(A < \sqrt{2} |A_{00}| \), then:

\[
E\left[R_{x(i)}(\tau)^k\right] = A_0^k + \sum_{i=0}^{k} \frac{k!}{2^i i!} A_0^{k-i} A_0^i F\left(\frac{k-1}{2}, \frac{1}{4}, A_0^2 \right)
\]

where \(F(\cdot) \) is a hypergeometrical function [4]. The form of formula (10) has been obtained by means of the computer program Mathematica [5].
Measurement setup 1: \(f_s = f_1 \).

Figure 3 and table 1 are example illustrations of the first measurement setup.

![Figure 3](image1.png)

Measurement setup 2: \(f_s < f_1 \).

Figure 4 and table 2 are example illustrations of the second measurement setup.

![Figure 4](image2.png)

Measurement setup 3: \(f_s > f_1 \).

Figure 5 and table 3 are example illustrations of the third measurement setup.

![Figure 5](image3.png)

Table 1. Results of the parameters estimation (7)-(9)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Mean-square</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>1 V</td>
<td>1.125 V(^2)</td>
<td>0.125 V(^2)</td>
</tr>
<tr>
<td>(\hat{\delta})</td>
<td>1 V</td>
<td>1.125 V(^2)</td>
<td>0.125 V(^2)</td>
</tr>
<tr>
<td>(\delta_k)</td>
<td>7.3 %</td>
<td>14 %</td>
<td>5.7 %</td>
</tr>
</tbody>
</table>

Just like in the second measurement setup, the change of phase in the second period of the signal \(x(t) \) results in the loss of a part of the information about signal \(x(t) \) contained in the autocorrelogram.

Conclusion

In the paper, results concerning research on the probabilistic properties of the sinusoidal signal autocorrelation function have been presented. The conducted research comprised determining the parameters of a random variable which assumes the autocorrelation function values. The mean, the mean-square and the variance of a random variable have been determined. In practice, such quantities are estimated based on signal or autocorrelogram samples. The obtained formulae make it possible to determine actual values of the distribution parameters of the autocorrelation function values.

REFERENCES

Authors: PhD Sergiusz Sienkowski, University of Zielona Góra, Institute of Electrical Metrology, Podgórna 50, 65-246 Zielona Góra, E-mail: S.Sienkowski@ime.uz.zgora.pl; PhD Elżbieta Kawecka, University of Zielona Góra, Institute of Computer Engineering and Electronics, Podgórna 50, 65-245 Zielona Góra, E-mail: E.Kawecka@iie.uz.zgora.pl.