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Abstract. The method of reduction of the control memory size in the microprogrammed controllers is proposed in the article. The idea is based on 
the hypergraph theory. The concurrent microoperations are encoded together thus the total volume of the memory is reduced. In order to receive the 
proper microinstruction, an additional module – microinstruction decoder is also prepared. The idea of the proposed method is illustrated by an 
example. Moreover, the result of performed experimental investigations is presented, as well. 
 
Streszczenie. W artykule zaproponowano metodę redukcji pojemności pamięci sterowników mikroprogramowanych. Metoda bazuje na teorii 
hipergrafów. Mikrooperacje parami kompatybilne są kodowane wspólnie, dzięki czemu redukcji ulega całkowita pojemność pamięci sterownika 
mikroprogramowanego. Do struktury układu wprowadzono dodatkowy moduł, dekodera mikroinstrukcji. Jednostka ta jest odpowiedzialna za 
odkodowanie pierwotnych danych. Idea proponowanej metody zilustrowano przykładem. Ponadto, przeprowadzono także badania 
eksperymentalne, których celem była weryfikacja skuteczności proponowanej metody. Wyniki badań pokazują, że pierwotna pamięć sterownika jest 
redukowana średnio o 21%. (Redukcja pojemności pamięci w sterownikach  mikroprogramowanych). 
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Introduction 

A control unit (CU) is important part of a digital system 
[1,2,3,4,5,6]. Usually, the control unit is realized as a finite 
state machine (FSM) [4,6,7,8]. However, in the case of the 
linear flow-chart, the microprogrammed controller may 
require less amount of hardware than control unit based on 
the traditional FSM model [9,10,11]. In case of 
microprogrammed controllers, the control unit is 
decomposed into two main parts. The first one addresses 
microinstructions [7,9], while the second is in response of 
holding and generating the proper microinstruction [10,12]. 

Such a solution leads to the reduction of the number of 
logic elements that are required for implementation of the 
controller [12]. Typically, the control memory is 
implemented as a ROM or RAM memory. Thus, wider areas 
of the destination device can be used for other modules of 
the prototyped system [1,4,5,7,10,13].  

Most of controllers (especially realized as a Complex 
Instruction Set Computers, CISC) have a long 
microinstruction width what influences on the memory size 
[3,5]. Such a situation causes serious problems in the 
prototyping process. In case of System-On-Programmable-
Chip (SoPC), the memory can be implemented with 
dedicated memory blocks of the Field Programmable Gate 
Arrays (FPGA). However, if the microinstruction length 
exceeds the total length of the dedicated memory block of 
an FPGA, the memory has to be decomposed. On the other 
hand, in case of controllers implemented as a System-On-
Chip (SoC), the memory is designed as an independent 
module. This means that each additional bit in the 
microinstruction width increases the total size of the 
memory and increases the cost of the whole device.  

In the paper we propose the method of the control 
memory reduction. The idea is based on the reduction of 
the microinstruction length by encoding the concurrent 
microoperations together. To achieve it, the hypergraph 
theory is applied [11,14]. Moreover, the particular stages of 
the reduction process also are performed with hypergraphs. 
Finally, the initial memory is reduced, while the proper 
microinstructions are decoded by an additional block of 
microinstruction decoder. 
 
Microprogrammed controllers 

The typical microprogrammed controller is presented in 
the Figure 1. The controller can be divided into three main 

units: addressing module (AM), counter (CT), and control 
memory (CM). 
 
 
 
 
 
Fig. 1. The microprogrammed controller 
 
The addressing module generates the proper excitation 
function for the counter:  

(1)  ),( QXfT   

 The counter is in charge of holding the code of the 
current state of the controller. Additionally, it generates the 
microinstruction address. The main benefit of the realization 
of the control unit as the microprogrammed controller is a 
possibility of implementation of the circuit CM with 
embedded memories [12]. Other blocks of the prototyping 
system are implemented with the logic blocks (flip-flops and 
LUT elements) of the programmable device (like FPGA) 
[1,10,12]. Such an idea permits to reduce the number of 
logic blocks in comparison with the realization of the 
controller as a traditional FSM and thus, the designer can 
allocate wider area of the FPGA for other blocks of the 
prototyping system. 
 Presented system can be easily implemented with 
embedded devices as a System-On-a-Chip or System-On-
a-Programmable-Chip. However, the size of the control 
memory may cause serious problems during the prototyping 
process. Most controllers have long microinstruction length, 
which influences on the total size of the memory. 
 
 
 
 
 
 
 
Fig. 2. An idea of the proposed method 
 
Idea of the proposed method 

To reduce the memory size, microinstructions that are 
pairwise compatible (can be executed concurrently) will be 
encoded together. Such an idea permits to reduce the total 
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memory size. However, an additional block, Microinstruction 
Decoder (MD) is also required. Figure 2 illustrates the idea 
of the proposed method. 
The reduction method bases on the hypergraph theory, 
initially presented in [11,14,15]. The reduction idea was 
enhanced and adapted to the microprogrammed controllers. 
The whole process can be divided into the following steps: 
 

1. Formation of the set of compatibility classes.  
Microoperations are compatible if they are not executed 
concurrently [14,16]. The result of this operation is the set 
Cc={C1,…,CK}, that contains all compatibility classes. This 
problem is related to the hypergraph complement. The 
initial memory is formed as a hypergraph H, which vertices 
refer to microoperations, and hyperedges represent 
microinstructions of the control memory. The main problem 
of the compatibility classes formation is computational 
complexity, which can be exponential in case of exact 
algorithms [14,16]. Therefore, very often approximate 
methods are applied [14,16]. The calculation of the 
hypergraph complement leads to the new hypergraph HC. It 
represents relations between compatibility classes and 
microoperations. Each hyperedge refer to the compatibility 
class, while vertices represent microoperations. 
 

2. Determination of the weight (cost) of each compatibility 
class. A weight (cost) of a compatibility class Ci is equal to 
the minimum number of bits required for its encoding 
[14,11]. The compatibility classes are encoded with the 
natural binary code: 

(2)   )1(log2  ii CL  

An additional bit is required for representation the state 
where no microoperation is executed.  
 

3. Calculation of the hypergraph dual to the hypergraph HC.  
In this step the dual hypergraph HD is formed. In practice 
this operation can be very easily done by transposition of 
the incidence matrix of an initial hypergraph. Vertices of 
hypergraph HD describe compatibility classes and 
hyperedges refer to microoperations of the initial memory. 
 

4. Determination of the minimum vertex covering 
(transversal) of hypergraph HD. At this stage the smallest 
transversal τ is calculated. Since this problem can be 
exponential for exact algorithms, approximate methods 
ought to be applied [11,13,14,16]. There is a possibility of 
obtaining more than one smallest transversal [14]. 
Therefore, calculation of the smallest weight is also 
required, to choose the best solution.  
 

5. Calculation of the total cost of each minimum covering 
and reduction of redundant microoperations. To determine 
the best solution, for each minimum transversal the total 
covering cost is calculated: 

(3)  
I
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where WS denotes the total cost of transversal τs and it is 
equal to the sum of weights Li of all compatibility classes 
that belong to this cover. If any microoperation belongs to 
more than one class, it ought to be reduced. This operation 
is executed primarily for classes, which total weights can be 
reduced. Finally, each microoperation belongs to one 
compatibility class. For further analysis, the transversal of 
the smallest total cost is selected. 
 

6. Encoding compatibility classes which realize minimal 
transversal. At this stage the compatibility classes are 
encoded with variables Q={q1,…,qWs}. The number of 
required |Q| bits is equal to the total weight of transversal τs. 
 

7. Determination of a new content of memory with encoded 
compatibility classes. The content of the memory is 
determined through concatenation of all variables obtained 
in the previous stage. Each new microinstruction is formed 
as a concatenation of Q codes of encoded classes. 
Therefore, the width of a new microinstruction is equal to 
WS, while the reduction of the control memory size can be 
calculated as [16]: 
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where: t – percentage reduction of the memory, I – number 
of classes realized smallest transversal, Li – weight of the i-
th class that belongs to the transversal, N – primary size of 
a microinstruction. 
 

8. Formation of the module of Microinstruction Decoder. In 
the final step the module MD is formed. Such a realization 
is trivial and may be easily done. An example of 
microinstruction decoder realization in Verilog hardware 
description language is shown in the next section. 
 

Finally, the whole system can be designed. Depending on 
the designers demands, proper modules can be 
implemented in various ways [3,4,12,17,18]. For example 
the addressing module, the counter and the microinstruction 
decoder may be realized with Look-Up Tables (LUTs), while 
Encoded Memory can be implemented with dedicated 
memory blocks of a destination reprogrammable device 
[5,14]. 
 

Example of the proposed method 
 The presented idea will be illustrated by an example. 
Let’s assume the hypothetical microcontroller, that executes 
N=6 microoperations, that are grouped into M=4 
microinstructions. The total size of the control memory 
equals to Vinit=6*4=24 bits. Table 1 presents the content of 
the control memory Mem1. 
 
Table 1. Exemplary memory Mem1 

Microinstruction 
(µM) 

Microoperation 

y0 y1 y2 y3 y4 y5 

µ1 0 1 0 0 0 1 

µ2 0 1 0 1 0 0 

µ3 1 0 0 0 1 0 

µ4 0 0 1 0 1 0 

 
 In the first step, the set of compatibility classes is 
calculated. To achieve it, the initial memory is formed as a 
hypergraph. Its vertices refer to microoperations, while its 
edges – to microinstructions. Now, the set of compatibility 
classes can be obtained via computation of the 
hypergraphs complement HC. Table 2 shows the result of 
such an operation. There are K=4 compatibility classes. The 
first one contains elements y0, y1 and  y2, which means that 
those operations do not occur concurrently in any of four 
microinstructions. The second class contains 
microoperations y1 and y4, third y0, y2, y3, y5 while the last 
one y3, y4 and y5. 
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Table 2. The obtained set of compatibility classes for the memory 
MemInit 

Compatibility 
Class (CK) 

Microoperation 

y0 y1 y2 y3 y4 y5 

C1 1 1 1 0 0 0 

C2 0 1 0 0 1 0 

C3 1 0 1 1 0 1 

C4 0 0 0 1 1 1 
 

 Next, weights for all compatibility classes ought to be 
computed. In the presented example the particular classes 
take the following costs:  
•    ,2)13(log21 L  

•    ,2)12(log22 L  

•    ,3)14(log23 L  

•    ,2)13(log24 L  

 At the third stage, the hypergraph HD dual to the HC is 
calculated. The edges of HD correspond to the vertices of 
HC, while its vertices refer to the edges of HC (Tab. 3). 
 

Table 3. The incidence matrix of hypergraph HC 

Microoperation 

Compatibility 
Class 

C1 C2 C3 C4 

y0 1 0 1 0 

y1 1 1 0 0 

y2 1 0 1 0 

y3 0 0 1 1 

y4 0 1 0 1 

y5 0 0 1 1 
 

 Next, the minimum vertex covering is calculated. For the 
hypergraph HC there are two solutions. The first one τ1 
consists of the sets C1 and C4, while the second transversal 
τ2 realizes the cover with the use of C2 and C3. To select the 
best solution, the total cost for each minimum covering has 
to be obtained. For the first transversal it is equal to 
W1=L1+L4=2+2=4, while for the second one the total weight 
equals to W2=L1+L4=5. There are no redundant 
microoperations, because in both transversals each 
microoperation belongs to only one class. Therefore, 
transversal τ1 is selected for the further analysis. 
 At the subsequent stage, the compatibility classes are 
encoded. Since the total weight for the transversal equals to 
W1=4, there are |Q|=4 variables required. Table 4 presents 
the result of encoding, where natural binary code was used. 
 
Table 4. Encoding of compatibility classes 

Class C1 Code Class C4 Code 

y0 y1 y2 q1 q2 y3 y4 y5 q3 q4 

0 1 0 0 0 0 0 1 0 0 

0 1 0 0 0 1 0 0 0 1 

1 0 0 0 1 0 1 0 1 0 

0 0 1 1 0 0 1 0 1 0 

 
 Based on the encoding presented in the Table 4, the 
content of the reduced control memory is determined. Table 
5 shows the content of the Mem1 after the reduction. 
 
 
 
 
 

Table 5. Content of the memory Mem1 after the reduction 

Microinstruction 
(µM) 

Microinstruction 

q1 q2 q3 q4 

µ1 0 0 0 0 

µ2 0 0 0 1 

µ3 0 1 1 0 

µ4 1 0 1 0 

 
 At the last stage, the microinstruction decoder has to be 
prototyped. An exemplary description in Verilog language of 
such a module is presented in the Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Przykładowy opis dekodera mikroinstrukcji w języku Verilog 
 
 Finally, the whole system can be implemented. Since 
the encoded microinstruction consists of |Q|=4 variables 
(encoded microoperations). Therefore, the total size of the 
new control memory is equal to Vreduced=16 bits. It means, 
that the original size of the control memory was reduced by 
t=33%. 
 
The results of experiments 
 The effectiveness of the discussed method has been 
verified experimentally. The library of test modules consists 
of over 50 benchmarks. All of examined memories were 
real memory systems of logic controllers and they were 
taken from specifications and benchmarks presented in 
[7,9,10,11,12,14,19].  
 For each benchmark, the full reduction process was 
performed. First, the memory was described with the 
hypergraph. Next,  compatibility classes were determined 
via calculation of the hypergraph complement. In the 
subsequent steps, weight of each class was calculated, 
dual hypergraph obtained and its minimal covering 
computed. If any of microoperations belong to more than 
one classes that comprise the transversal, they are reduced 
to achieve the lowest total cost. After selection of the 
transversal with the lowest cost, initial memory was 
encoded. To verify the functional correctness of the reduced 
memory, ten randomly selected benchmarks were designed 
with Verilog language. Next, the functional simulation was 
executed. For all examined benchmarks, either initial and 
reduced memory have the proper results, which confirms 
the correctness of the performed reduction. 
 Finally, the size of the encoded memory was compared 
with the initial one. Table 6 shows the results of 
experiments, where representative benchmarks (memories) 
are presented. 
 Particular columns contain the following data:  
• benchmark – specifies the name of test module; 
• size of the initial memory – the initial size of the test 

module memory; 
• size of the reduced memory – the capacity of the 

memory after the reduction; 

module MicroinstructionDecoder (y,q); 
 output [1:6] y; 
 input [1:4] q; 
  
 //decoding of microinstructions: 
 assign y[1]=~q[1]&q[2]; 
 assign y[2]=~q[1]&~q[2]; 
 assign y[3]=q[1]&~q[2]; 
 assign y[4]=~q[3]&q[4]; 
 assign y[5]=q[3]&~q[4]; 
 assign y[6]=~q[3]&~q[4]; 
endmodule 
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• density of the memory – the number of microoperations 
that are equal to “1” in relation to the total size of the 
memory (expressed in percentage terms); 

• reduction of the memory – the size of the memory after 
reduction in relation to the initial capacity memory  

 (expressed in percentage terms.  
The average results refer to all benchmarks in the library 
tests. 
 
Table 6. Results of experiments 

Benchmark 

Size of 
the initial 
memory  

[bits] 

Size of the 
reduced 
memory 

[bits] 

Density 
of the 

memory 

Reduction 
of the 

memory 
[%] 

Test022 264 154 19,31% 42% 

Test021 176 112 20,45% 36% 

TestMK_06 234 162 28,63% 31% 

TestMK_10 180 135 27,22% 25% 

Test016 25 20 28,00% 20% 

Test032 168 140 41,66% 17% 

Test012 60 55 71,66% 8% 

Average 72,93 57,58 35,66% 21% 

 
 From above tables we can see that application of the 
proposed method permits to reduce the volume of the 
memory on average by 21%. All of the examined memories 
were reduced (the lowest reduction was equal to 8%, while 
the highest – 42%). It means, that the size of reduced 
memory in microprogrammed controllers is always smaller 
than the initial one.  
 It is worth to notice, that effectiveness of the reduction 
process strongly depends on the density of the initial 
memory. Results of experiments have shown that reduction 
is especially high in case of density lower than 30% of the 
initial memory. For example the memory of Test022 can be 
reduced over than 40%. On the other hand, there are 
controllers which memories are hard to reduce with higher 
density, and the reduction may be less than 10%. 
 
Conclusions 
 The method of reduction of microprogrammed 
controllers memory was presented in the paper. The idea 
was based on the hypergraph theory. An initial memory is 
represented by a hypergraph. Further computations lead to 
the reduced memory, where microoperations are encoded. 
The results of experiments have shown, that effectiveness 
of the proposed method strongly depends on the density of 
the initial memory. 
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