
114 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 11/2013

Marian ADAMSKI, Alexander BARKALOV, Remigiusz WIŚNIEWSKI, Jakub LIPIŃSKI

Uniwersytet Zielonogórski

Reduction of the Memory Size in the Microprogrammed
Controllers

Abstract. The method of reduction of the control memory size in the microprogrammed controllers is proposed in the article. The idea is based on
the hypergraph theory. The concurrent microoperations are encoded together thus the total volume of the memory is reduced. In order to receive the
proper microinstruction, an additional module – microinstruction decoder is also prepared. The idea of the proposed method is illustrated by an
example. Moreover, the result of performed experimental investigations is presented, as well.

Streszczenie. W artykule zaproponowano metodę redukcji pojemności pamięci sterowników mikroprogramowanych. Metoda bazuje na teorii
hipergrafów. Mikrooperacje parami kompatybilne są kodowane wspólnie, dzięki czemu redukcji ulega całkowita pojemność pamięci sterownika
mikroprogramowanego. Do struktury układu wprowadzono dodatkowy moduł, dekodera mikroinstrukcji. Jednostka ta jest odpowiedzialna za
odkodowanie pierwotnych danych. Idea proponowanej metody zilustrowano przykładem. Ponadto, przeprowadzono także badania
eksperymentalne, których celem była weryfikacja skuteczności proponowanej metody. Wyniki badań pokazują, że pierwotna pamięć sterownika jest
redukowana średnio o 21%. (Redukcja pojemności pamięci w sterownikach mikroprogramowanych).

Keywords: hypergraphs, microprogrammed controllers, reduction, memory, microinstruction decoder.
Słowa kluczowe: hipergrafy, sterowniki mikroprogramowane, redukcja, pamięć, konwerter adresów.

Introduction

A control unit (CU) is important part of a digital system
[1,2,3,4,5,6]. Usually, the control unit is realized as a finite
state machine (FSM) [4,6,7,8]. However, in the case of the
linear flow-chart, the microprogrammed controller may
require less amount of hardware than control unit based on
the traditional FSM model [9,10,11]. In case of
microprogrammed controllers, the control unit is
decomposed into two main parts. The first one addresses
microinstructions [7,9], while the second is in response of
holding and generating the proper microinstruction [10,12].

Such a solution leads to the reduction of the number of
logic elements that are required for implementation of the
controller [12]. Typically, the control memory is
implemented as a ROM or RAM memory. Thus, wider areas
of the destination device can be used for other modules of
the prototyped system [1,4,5,7,10,13].

Most of controllers (especially realized as a Complex
Instruction Set Computers, CISC) have a long
microinstruction width what influences on the memory size
[3,5]. Such a situation causes serious problems in the
prototyping process. In case of System-On-Programmable-
Chip (SoPC), the memory can be implemented with
dedicated memory blocks of the Field Programmable Gate
Arrays (FPGA). However, if the microinstruction length
exceeds the total length of the dedicated memory block of
an FPGA, the memory has to be decomposed. On the other
hand, in case of controllers implemented as a System-On-
Chip (SoC), the memory is designed as an independent
module. This means that each additional bit in the
microinstruction width increases the total size of the
memory and increases the cost of the whole device.

In the paper we propose the method of the control
memory reduction. The idea is based on the reduction of
the microinstruction length by encoding the concurrent
microoperations together. To achieve it, the hypergraph
theory is applied [11,14]. Moreover, the particular stages of
the reduction process also are performed with hypergraphs.
Finally, the initial memory is reduced, while the proper
microinstructions are decoded by an additional block of
microinstruction decoder.

Microprogrammed controllers

The typical microprogrammed controller is presented in
the Figure 1. The controller can be divided into three main

units: addressing module (AM), counter (CT), and control
memory (CM).

Fig. 1. The microprogrammed controller

The addressing module generates the proper excitation
function for the counter:

(1)),(QXfT 

 The counter is in charge of holding the code of the
current state of the controller. Additionally, it generates the
microinstruction address. The main benefit of the realization
of the control unit as the microprogrammed controller is a
possibility of implementation of the circuit CM with
embedded memories [12]. Other blocks of the prototyping
system are implemented with the logic blocks (flip-flops and
LUT elements) of the programmable device (like FPGA)
[1,10,12]. Such an idea permits to reduce the number of
logic blocks in comparison with the realization of the
controller as a traditional FSM and thus, the designer can
allocate wider area of the FPGA for other blocks of the
prototyping system.
 Presented system can be easily implemented with
embedded devices as a System-On-a-Chip or System-On-
a-Programmable-Chip. However, the size of the control
memory may cause serious problems during the prototyping
process. Most controllers have long microinstruction length,
which influences on the total size of the memory.

Fig. 2. An idea of the proposed method

Idea of the proposed method

To reduce the memory size, microinstructions that are
pairwise compatible (can be executed concurrently) will be
encoded together. Such an idea permits to reduce the total

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 11/2013 115

memory size. However, an additional block, Microinstruction
Decoder (MD) is also required. Figure 2 illustrates the idea
of the proposed method.
The reduction method bases on the hypergraph theory,
initially presented in [11,14,15]. The reduction idea was
enhanced and adapted to the microprogrammed controllers.
The whole process can be divided into the following steps:

1. Formation of the set of compatibility classes.
Microoperations are compatible if they are not executed
concurrently [14,16]. The result of this operation is the set
Cc={C1,…,CK}, that contains all compatibility classes. This
problem is related to the hypergraph complement. The
initial memory is formed as a hypergraph H, which vertices
refer to microoperations, and hyperedges represent
microinstructions of the control memory. The main problem
of the compatibility classes formation is computational
complexity, which can be exponential in case of exact
algorithms [14,16]. Therefore, very often approximate
methods are applied [14,16]. The calculation of the
hypergraph complement leads to the new hypergraph HC. It
represents relations between compatibility classes and
microoperations. Each hyperedge refer to the compatibility
class, while vertices represent microoperations.

2. Determination of the weight (cost) of each compatibility
class. A weight (cost) of a compatibility class Ci is equal to
the minimum number of bits required for its encoding
[14,11]. The compatibility classes are encoded with the
natural binary code:

(2)  )1(log2  ii CL

An additional bit is required for representation the state
where no microoperation is executed.

3. Calculation of the hypergraph dual to the hypergraph HC.
In this step the dual hypergraph HD is formed. In practice
this operation can be very easily done by transposition of
the incidence matrix of an initial hypergraph. Vertices of
hypergraph HD describe compatibility classes and
hyperedges refer to microoperations of the initial memory.

4. Determination of the minimum vertex covering
(transversal) of hypergraph HD. At this stage the smallest
transversal τ is calculated. Since this problem can be
exponential for exact algorithms, approximate methods
ought to be applied [11,13,14,16]. There is a possibility of
obtaining more than one smallest transversal [14].
Therefore, calculation of the smallest weight is also
required, to choose the best solution.

5. Calculation of the total cost of each minimum covering
and reduction of redundant microoperations. To determine
the best solution, for each minimum transversal the total
covering cost is calculated:

(3) 
I

iLs
W

1

where WS denotes the total cost of transversal τs and it is
equal to the sum of weights Li of all compatibility classes
that belong to this cover. If any microoperation belongs to
more than one class, it ought to be reduced. This operation
is executed primarily for classes, which total weights can be
reduced. Finally, each microoperation belongs to one
compatibility class. For further analysis, the transversal of
the smallest total cost is selected.

6. Encoding compatibility classes which realize minimal
transversal. At this stage the compatibility classes are
encoded with variables Q={q1,…,qWs}. The number of
required |Q| bits is equal to the total weight of transversal τs.

7. Determination of a new content of memory with encoded
compatibility classes. The content of the memory is
determined through concatenation of all variables obtained
in the previous stage. Each new microinstruction is formed
as a concatenation of Q codes of encoded classes.
Therefore, the width of a new microinstruction is equal to
WS, while the reduction of the control memory size can be
calculated as [16]:

(4) %1001 1 























N

L
t

I

i
i

where: t – percentage reduction of the memory, I – number
of classes realized smallest transversal, Li – weight of the i-
th class that belongs to the transversal, N – primary size of
a microinstruction.

8. Formation of the module of Microinstruction Decoder. In
the final step the module MD is formed. Such a realization
is trivial and may be easily done. An example of
microinstruction decoder realization in Verilog hardware
description language is shown in the next section.

Finally, the whole system can be designed. Depending on
the designers demands, proper modules can be
implemented in various ways [3,4,12,17,18]. For example
the addressing module, the counter and the microinstruction
decoder may be realized with Look-Up Tables (LUTs), while
Encoded Memory can be implemented with dedicated
memory blocks of a destination reprogrammable device
[5,14].

Example of the proposed method
 The presented idea will be illustrated by an example.
Let’s assume the hypothetical microcontroller, that executes
N=6 microoperations, that are grouped into M=4
microinstructions. The total size of the control memory
equals to Vinit=6*4=24 bits. Table 1 presents the content of
the control memory Mem1.

Table 1. Exemplary memory Mem1

Microinstruction
(µM)

Microoperation

y0 y1 y2 y3 y4 y5

µ1 0 1 0 0 0 1

µ2 0 1 0 1 0 0

µ3 1 0 0 0 1 0

µ4 0 0 1 0 1 0

 In the first step, the set of compatibility classes is
calculated. To achieve it, the initial memory is formed as a
hypergraph. Its vertices refer to microoperations, while its
edges – to microinstructions. Now, the set of compatibility
classes can be obtained via computation of the
hypergraphs complement HC. Table 2 shows the result of
such an operation. There are K=4 compatibility classes. The
first one contains elements y0, y1 and y2, which means that
those operations do not occur concurrently in any of four
microinstructions. The second class contains
microoperations y1 and y4, third y0, y2, y3, y5 while the last
one y3, y4 and y5.

116 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 11/2013

Table 2. The obtained set of compatibility classes for the memory
MemInit

Compatibility
Class (CK)

Microoperation

y0 y1 y2 y3 y4 y5

C1 1 1 1 0 0 0

C2 0 1 0 0 1 0

C3 1 0 1 1 0 1

C4 0 0 0 1 1 1

 Next, weights for all compatibility classes ought to be
computed. In the presented example the particular classes
take the following costs:
•   ,2)13(log21 L

•   ,2)12(log22 L

•   ,3)14(log23 L

•   ,2)13(log24 L

 At the third stage, the hypergraph HD dual to the HC is
calculated. The edges of HD correspond to the vertices of
HC, while its vertices refer to the edges of HC (Tab. 3).

Table 3. The incidence matrix of hypergraph HC

Microoperation

Compatibility
Class

C1 C2 C3 C4

y0 1 0 1 0

y1 1 1 0 0

y2 1 0 1 0

y3 0 0 1 1

y4 0 1 0 1

y5 0 0 1 1

 Next, the minimum vertex covering is calculated. For the
hypergraph HC there are two solutions. The first one τ1
consists of the sets C1 and C4, while the second transversal
τ2 realizes the cover with the use of C2 and C3. To select the
best solution, the total cost for each minimum covering has
to be obtained. For the first transversal it is equal to
W1=L1+L4=2+2=4, while for the second one the total weight
equals to W2=L1+L4=5. There are no redundant
microoperations, because in both transversals each
microoperation belongs to only one class. Therefore,
transversal τ1 is selected for the further analysis.
 At the subsequent stage, the compatibility classes are
encoded. Since the total weight for the transversal equals to
W1=4, there are |Q|=4 variables required. Table 4 presents
the result of encoding, where natural binary code was used.

Table 4. Encoding of compatibility classes

Class C1 Code Class C4 Code

y0 y1 y2 q1 q2 y3 y4 y5 q3 q4

0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 1 0 1 0

0 0 1 1 0 0 1 0 1 0

 Based on the encoding presented in the Table 4, the
content of the reduced control memory is determined. Table
5 shows the content of the Mem1 after the reduction.

Table 5. Content of the memory Mem1 after the reduction

Microinstruction
(µM)

Microinstruction

q1 q2 q3 q4

µ1 0 0 0 0

µ2 0 0 0 1

µ3 0 1 1 0

µ4 1 0 1 0

 At the last stage, the microinstruction decoder has to be
prototyped. An exemplary description in Verilog language of
such a module is presented in the Figure 3.

Fig. 3. Przykładowy opis dekodera mikroinstrukcji w języku Verilog

 Finally, the whole system can be implemented. Since
the encoded microinstruction consists of |Q|=4 variables
(encoded microoperations). Therefore, the total size of the
new control memory is equal to Vreduced=16 bits. It means,
that the original size of the control memory was reduced by
t=33%.

The results of experiments
 The effectiveness of the discussed method has been
verified experimentally. The library of test modules consists
of over 50 benchmarks. All of examined memories were
real memory systems of logic controllers and they were
taken from specifications and benchmarks presented in
[7,9,10,11,12,14,19].
 For each benchmark, the full reduction process was
performed. First, the memory was described with the
hypergraph. Next, compatibility classes were determined
via calculation of the hypergraph complement. In the
subsequent steps, weight of each class was calculated,
dual hypergraph obtained and its minimal covering
computed. If any of microoperations belong to more than
one classes that comprise the transversal, they are reduced
to achieve the lowest total cost. After selection of the
transversal with the lowest cost, initial memory was
encoded. To verify the functional correctness of the reduced
memory, ten randomly selected benchmarks were designed
with Verilog language. Next, the functional simulation was
executed. For all examined benchmarks, either initial and
reduced memory have the proper results, which confirms
the correctness of the performed reduction.
 Finally, the size of the encoded memory was compared
with the initial one. Table 6 shows the results of
experiments, where representative benchmarks (memories)
are presented.
 Particular columns contain the following data:
• benchmark – specifies the name of test module;
• size of the initial memory – the initial size of the test

module memory;
• size of the reduced memory – the capacity of the

memory after the reduction;

module MicroinstructionDecoder (y,q);
 output [1:6] y;
 input [1:4] q;

 //decoding of microinstructions:
 assign y[1]=~q[1]&q[2];
 assign y[2]=~q[1]&~q[2];
 assign y[3]=q[1]&~q[2];
 assign y[4]=~q[3]&q[4];
 assign y[5]=q[3]&~q[4];
 assign y[6]=~q[3]&~q[4];
endmodule

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 11/2013 117

• density of the memory – the number of microoperations
that are equal to “1” in relation to the total size of the
memory (expressed in percentage terms);

• reduction of the memory – the size of the memory after
reduction in relation to the initial capacity memory

 (expressed in percentage terms.
The average results refer to all benchmarks in the library
tests.

Table 6. Results of experiments

Benchmark

Size of
the initial
memory

[bits]

Size of the
reduced
memory

[bits]

Density
of the

memory

Reduction
of the

memory
[%]

Test022 264 154 19,31% 42%

Test021 176 112 20,45% 36%

TestMK_06 234 162 28,63% 31%

TestMK_10 180 135 27,22% 25%

Test016 25 20 28,00% 20%

Test032 168 140 41,66% 17%

Test012 60 55 71,66% 8%

Average 72,93 57,58 35,66% 21%

 From above tables we can see that application of the
proposed method permits to reduce the volume of the
memory on average by 21%. All of the examined memories
were reduced (the lowest reduction was equal to 8%, while
the highest – 42%). It means, that the size of reduced
memory in microprogrammed controllers is always smaller
than the initial one.
 It is worth to notice, that effectiveness of the reduction
process strongly depends on the density of the initial
memory. Results of experiments have shown that reduction
is especially high in case of density lower than 30% of the
initial memory. For example the memory of Test022 can be
reduced over than 40%. On the other hand, there are
controllers which memories are hard to reduce with higher
density, and the reduction may be less than 10%.

Conclusions
 The method of reduction of microprogrammed
controllers memory was presented in the paper. The idea
was based on the hypergraph theory. An initial memory is
represented by a hypergraph. Further computations lead to
the reduced memory, where microoperations are encoded.
The results of experiments have shown, that effectiveness
of the proposed method strongly depends on the density of
the initial memory.

REFERENCES
[1] De Micheli G., Synthesis and Optimization of Digital Circuits,

McGraw-Hill, New York, NY, (1994)
[2] Doligalski M., Adamski M., Hierarchical configurable Petri net

modeling in VHDL, International Journal of Electronics and
Telecommunications, 58 (4), (2012), pp. 397-402

[3] Gajski D., Principles of Digital Design, Prentice Hall, Upper
Saddle River, NJ, (1996)

[4] Kania D., The Logic Synthesis for the PAL-based Complex
Programmable Logic Devices, Lecture Notes of the Silesian
University of Technology (in Polish), Gliwice, (2004)

[5] Maxfield C., The Design Warrior's Guide to FPGAs, Academic
Press, Inc., Orlando, FL, (2004)

[6] Sentovich, E.M., Sequential Circuit Synthesis at the Gate
Level, Ph.D. thesis. Chair-Robert K. Brayton, (1993)

[7] Baranov S.I., Logic Synthesis for Control Automata, Kluwer
Academic Publishers, Boston, MA, (1994)

[8] Łuba T., Synthesis of Logic Devices, Warsaw University of
Technology Press (in Polish), Warsaw, (2005)

[9] Adamski M., and Barkalov A., Architectural and Sequential
Synthesis of Digital Devices, University of Zielona Góra Press,
Zielona Góra, (2006)

[10] Barkalov A., and Titarenko L., Logic synthesis for FSM-based
control units, Lecture Notes in Electrical Engineering, Vol. 53.
Springer-Verlag, Berlin, (2009)

[11] Wiśniewska M., Wiśniewski R., and Adamski M., Reduction of
the microinstruction lenght in the designing process of
microprogrammed controllers, Electrical Review, 85 (7) (2009),
203–206

[12] Wiśniewski R., Synthesis of compositional microprogram
control units for programmable devices, Lecture Notes in
Control and Computer Science, Vol. 14. University of Zielona
Góra Press, Zielona Góra, 2009

[13] Berge C., Graphs and Hypergraph, North-Hols.r Mathematical
Library, Amsterdam (1976)

[14] Wiśniewska M., Application of hypergraphs to the
decomposition of the discrete-systems, PhD thesis, University
of Zielona Góra, (2011)

[15] Adamski M., Wiśniewska M., Wiśniewski R., Stefanowicz Ł.,
Application of hypergraphs to the reduction of the memory size
in the Microprogrammed Controllers with Address Converter,
Electrical Review, 8 (2012), 134–136

[16] Robertson E.L., Microcode bit optimization is NP-complete,
IEEE Trans. Comput., C-28 (1979), pp. 316–319

[17] Grobelna I., Formal verification of embedded logic controller
specification with computer deduction in temporal logic,
Electrical Review, 12a (2011), 40-43

[18] Milik A., Hrynkiewicz E., Synthesis and implementation of
reconfigurable PLC on FPGA platform, International Journal of
Electronics and Telecommunications, 58 (1) (2012), 85–94

[19] Kołopieńczyk M., Application of adress converter for
decreasing memory size of CMCU with code sharing, Lecture
Notes in Control and Computer Science, Vol. 12. University of
Zielona Góra Press, Zielona Góra, (2008)

Authors:
prof. dr hab. inż. Marian Adamski
Profesor zwyczajny, zatrudniony w Instytucie Informatyki
i Elektroniki Uniwersytetu Zielonogórskiego. Zainteresowania
badawcze obejmują projektowanie systemów cyfrowych
realizowanych w postaci mikrosystemów cyfrowych oraz
formalnych metod programowania sterowników logicznych.
e-mail: M.Adamski@iie.uz.zgora.pl

Prof. dr hab. inż. Alexander Barkalov
Prof. Alexander A. Barkalov w latach 1976-1996 był pracownikiem
Instytutu Cybernetyki im. V.M. Glushkova w Kijowie, gdzie uzyskał
tytuł doktora habilitowanego ze specjalnością informatyka. W latach
1996-2003 pracował jako profesor w Instytucie Informatyki
Narodowej Politechniki Donieckiej. Od 2004 pracuje jako profesor
w Instytucie Informatyki i Elektroniki Uniwersytetu
Zielonogórskiego.
e-mail: a.barkalov@iie.uz.zgora.pl

dr inż. Remigiusz Wiśniewski
Absolwent Uniwersytetu Zielonogórskiego, pracę doktorską obronił
w 2008 roku. W latach 2000-2001 dwukrotnie odbył przemysłową
praktykę studencką w firmie Aldec Inc. w Stanach Zjednoczonych.
Aktualnie pracuje jako adiunkt (Uniwersytet Zielonogórski).
Zainteresowania badawcze obejmują zagadnienia z zakresu teorii
grafów i hipergrafów, bezpieczeństwa danych i kryptologii oraz
metodologii projektowania i implementacji systemów cyfrowych.
e-mail: R.Wisniewski@iie.uz.zgora.pl

mgr inż. Jakub Lipiński
Absolwent Uniwersytetu Zielonogórskiego, pracę magisterską
obronił w 2009 roku. Jest słuchaczem studiów doktoranckich,
specjalność informatyka. Aktualnie pracuje w Szpitalu
Wojewódzkim SPZOZ w Zielonej Górze. Zainteresowania
badawcze obejmują zagadnienia z zakresu teorii grafów i
hipergrafów.
e-mail: J.Lipinski@weit.uz.zgora.pl

