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signal samples 

 
 

Abstract. In the paper, it is shown that at a given moment of time the actual values of the sinusoidal signal autocorrelation function can be 
determined in an unambiguous way on the basis of three samples of the signal and three samples of its time-shifted copy. Based on this,  
an algorithm making it possible to determine an autocorrelogram has been devised. The employment of the devised algorithm substantially reduces 
the time consumption of determining an autocorrelogram. 
 
Streszczenie. W artykule pokazano, że w ustalonej chwili czasowej rzeczywiste wartość funkcji autokorelacji sygnału sinusoidalnego można 
wyznaczyć w sposób jednoznaczny na podstawie trzech próbek sygnału i trzech próbek jego własnej, przesuniętej w czasie kopii. Na tej podstawie 
opracowano algorytm umożliwiający wyznaczanie autokorelogramu. (Wyznaczanie funkcji autokorelacji na podstawie sześciu sygnałów 
sinusoidalnych) 
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Introduction 
The autocorrelation function is an established tool to 

analyze signal properties and to compare signals. In many 
practical applications, the autocorrelation function is used 
for checking to what degree the value of a signal at a fixed 
moment of time influences the value of the signal at  
a certain moment in the future. Such investigation consists 
in comparing a signal with its time-shifted copy. In practice, 
actual values of the signal autocorrelation function are 
determined or estimated from samples of the signal. Based 
on this, an autocorrelogram is prepared which is a graphical 
and numerical representation of the autocorrelation 
function. An autocorrelogram is determined in order to 
investigate the autocorrelation function properties. Because 
of the quadratic time complexity of the autocorrelation 
algorithm, determining an autocorrelogram is time-
consuming.  

In the paper, it is shown that at a fixed moment of time, 
actual values of the sinusoidal signal autocorrelation 
function can be unambiguously determined based on three 
samples of the signal and three samples of its time-shifted 
copy. Then determining an autocorrelogram can be carried 
out by means of an algorithm of linear time complexity. This 
results in significant reduction in the time consumption of 
determining an autocorrelogram. 
 
Sinusoidal signal autocorrelation function 

The autocorrelation function of a continuous in the time 
tR periodic and ergodic signal x(t) is defined as follows  
[1-4]: 
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where TR+ is the period, R is the delay of x(t). 
Let x(t) be a sinusoidal signal described by the formula: 
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where AR+ is the amplitude, A0R is the constant 
component, R is the initial phase of x(t).  

Based on formulae (1) and (2), we obtain [1-4]: 
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In practice, signal (2) undergoes sampling, i.e. 
discretization in the time domain. Let us consider the classic 
approach and assume that the discretization is uniform, and 
that the sampling theorem is fulfilled. Then, based on M 
samples (per period): 
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of signal (2), we obtain the quantity: 
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on whose basis the value of function (3) can be estimated. 
Quantity (6) constitutes a mathematical description  

of an iterative algorithm making it possible to determine  
an autocorrelogram. Such an algorithm can be presented  
in the following way: 

 

Step 1: Fix the values of the parameters of signal (2), the 
values of the signal processing parameters, and the initial 
value k0 of the delay k.  
Step 2: Using formulae (4) and (5), determine and store 
samples of the signal and samples of its time-shifted copy.  
Step 3: Determine and store the value of quantity (6).  
Step 4: Repeat steps 2 and 3 for subsequent values k0  

of the delay k in order to obtain a correlogram. 
 

It can be noted that the number of operations required to 
determine an autocorrelogram is equal to M2. Therefore, the 
time complexity of the algorithm is quadratic.  

In order to compare quantities (3) and (6) one has to 
determine the values of these quantities at the same fixed 
moment of time. It requires finding a relationship between 
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the delays k and . Let us assume that for any fixed value 0 
of the delay , there exists a value: 

(7)  0 0τ ,
M

k
T

  

of the delay k, such that k0N. Then the values of quantities 
(3) and (6) are determined at the same moment of time. 

 
Determining autocorrelation function values from six 
sinusoidal signal samples 

First of all, let us show that for M=2 initial samples (per 
period) of signal (2) and for M=2 initial samples (per period) 
of its time-shifted copy, we obtain Rx[i][k0]Rx(t)(0).  

Let us assume M=2, thus, based on formula (6), we 
obtain: 
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where: 
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Let us note that k0 assumes the values 0 and 1, while 0 
the values 0 and T/2. Then the values of quantities (3) and 
(8) are determined at the same moments of time.  

Since: 
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then: 
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 Putting k0=20/T in formula (11), we obtain: 
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Comparing formulae (3) and (12) we note instantly that 
Rx[i][k0]Rx(t)(0). This means that based on M=2 initial 
samples of signal (2) and M=2 initial samples of its time-
shifted copy, it is impossible to unambiguously determine 
the actual value of function (3).  

Let us now formulate the following theorem: 
Theorem 1 

 

If for any fixed value 0 of the delay , there exists  
a value: 

(13) 0 0
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of the delay k, such that k0N, then for M=3 initial samples 
of signal (2) and for M=3 initial samples of its time-shifted 
copy, we obtain Rx[i][k0]=Rx(t)(0). 

 
Proof. Let us assume M=3, thus on the basis of formula (6) 
we obtain: 

(14)

       

           

   

 

2

0 0x
0

0 0 0

0 0

0

1
x x

3

1 1 1
     x 0 x x 1 x 1 x 2 x 2

3 3 3
1 1

      0 1
3 3 3 3 3

1 2
      2 ,

3 3 3

i
i

R k i i k

k k k

T T T
x x k x x k

T T
x x k


 

    

            
     

       
   



 

where: 
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Let us note that k0 assumes the values 0, 1, and 2, while 
0 the values 0, T/3, and 2T/3. Then the values of quantities 
(3) and (14) are determined at the same moments of time.  

Since: 
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then: 
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Ordering and reducing formula (17), we obtain: 
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Putting k0=30/T in formula (18), we obtain: 
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It has been proven that to unambiguously determine the 
actual value of the autocorrelation function Rx(t)() of signal 
(2), it is sufficient to have M=3 initial samples of the signal 
and M=3 initial samples of its time-shifted copy.  

The following theorem is also true: 
 

Theorem 2 
 
If for any fixed value 0 of the delay , there exists  

a value k0=30/T of the delay k, such that k0N, then for M=3 
subsequent samples of signal (2) and for M=3 subsequent 
samples of its time-shifted copy, we obtain Rx[i][k0]=Rx(t)(0). 

 
We leave the proof of Theorem 2 to the reader. In the 

proof, it should be noted that for M=3 and nN: 
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where n is the index of the sample from which determining 
the values of quantity (20) begins. 

It should be borne in mind that if we abandon the 
physical interpretation understood in terms of signal 
sampling, and we take into account 0, for which a certain 
l0=30/T exists which is not the index of a sample, but a real 
number, then the formula:  
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makes it possible to determine the actual value of the 
autocorrelation function Rx(t)(0) of signal (2). The 
explanation of this fact (it also refers to Theorem 2) follows 
from the stationariness of signal (2), i.e. the mean and the 

autocorrelation function of the signal do not depend on the 
initial moment of time at which they are determined [3].  

The above remark will be helpful in answering the 
following question. In the situation when we a priori assume 
M>3, can Theorem 1 be used to determine an 
autocorrelogram adequate to the one obtained by means of 
formula (6)? The answer is positive. It will suffice to apply 
the formula: 
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which follows from relation (14). 
Quantity (22) constitutes a mathematical description of 

an iterative algorithm making it possible to determine an 
autocorrelogram. It follows from formula (22) that the 
number of the significant operations necessary to determine 
an autocorrelogram is equal to 3M. Thus, the algorithm time 
complexity is linear. Since M2/3M=M/3, then in comparison 
with the algorithm described by formula (6), M/3-fold 
reduction in the time consumption of the autocorrelogram 
determination will take place. 
 
Conclusion 

It has been shown in the paper that actual values of the 
autocorrelation function of a sinusoidal signal can be 
determined based on six samples of the signal. It has also 
been shown that the obtained results can be applied to 
designing an algorithm that makes it possible to reduce the 
time consumption of determining an autocorrelogram 
without losing information about the autocorrelation 
function.  

The authors have presented the results concerning the 
sinusoidal signal autocorrelation function, bearing in mind 
that such a function is known, and its actual values can be 
determined from an integral formula. In such a case, 
determining actual values of the autocorrelation function by 
means of samples may be open to doubt, even if we take 
into account the fact that there are as many as six samples 
and they are easy to obtain. However, it should also be 
taken into consideration that in contemporary measurement 
systems, processing operations of a signal are almost 
exclusively performed on its digital representation. 
Searching for ways of reducing the time consumption of 
such operations is therefore justified. 
 

REFERENCES 
[1] Bendat J.S., Piersol A.G., Random data: analysis and 

measurement procedures, Wiley, 2010 
[2] Dunn P.F., Measurement and data analysis for engineering and 

science, Taylor & Francis Group, 2010 
[3] Szabatin J., Fundamentals of signal theory, Transport and 

Communication Publishers, Warszawa, 2007 (in Polish) 
[4] Lal-Jadziak J., Influencing accuracy in correlation 

measurements, Monograph, no 101, University of Zielona Góra 
Publishing House, Zielona Góra, 2001 (in Polish) 

 
 
Authors: PhD Sergiusz Sienkowski, University of Zielona Góra, 
Institute of Electrical Metrology, Podgórna 50, 65-246 Zielona Góra, 
E-mail: S.Sienkowski@ime.uz.zgora.pl; PhD Elżbieta Kawecka, 
University of Zielona Góra, Institute of Computer Engineering and 
Electronics, Podgórna 50, 65-246 Zielona Góra, E-mail: 
E.Kaweckai@iie.uz.zgora.pl; PhD Piotr Mróz, University of Zielona 
Góra, Institute of Computer Engineering and Electronics, Podgórna 
50, 65-246 Zielona Góra, E-mail: P.Mróz@iie.uz.zgora.pl. 
 


