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Back EMF Computation of BLDC Motor  
 

Streszczenie. Artykuł przedstawia metodę modelowania i wyznaczania numerycznego indukowanej siły elektromotorycznej w uzwojeniach 
trójfazowego silnika BLDC przy wykorzystaniu metody elementów skończonych. W prezentowanym modelu równania pola elektromagnetycznego 
uwzględniające oddziaływanie magnesów trwałych są sprzężone z równaniami ruchu i rozwiązywane wspólnie w dyskretnych chwilach czasowych. 
Siła elektromotoryczna indukowana w obwodzie elektrycznym jest obliczana dla zadanej prędkości obrotowej silnika. Wyniki obliczeń numerycznych 
porównano z pomiarami. 
  
Abstract. In this paper a method of modeling and numerical calculation of the back electromotive force in the three phase BLDC motor using the  
finite element technique is presented. In analyzed model the electromagnetic field model considering permanent magnets is coupled with motion 
model and solved together at discrete time steps. The back electromotive force induced in the electric circuit is computed for a given rotor velocity. 
Numerical calculations are compared with experimental results. (Metoda obliczania siły elektromotorycznej w silniku BLDC). 
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Introduction 
 The wide application of electric machines legitimizes the 
need for constant improvements, which lead to enhanced 
performance in terms of mechanical and electrical 
characteristics. This is achieved by modifications in design 
understood as shape, material properties, electronic 
inverter and, last but not least, applied control law [2,3,12].  
 All this is possible when accurate and precise numerical 
model is applied. This overall model should be a product of 
three different sub models describing electromagnetic field, 
electrical circuit and motion. The most crucial thing is the 
effectiveness of their mutual coupling giving exact problem 
description at every time instance. There is a vast interest 
among researchers to develop this numerical technique as 
a powerful tool for electric machines prototyping 
[2,4,6,10,13]. 
  This paper continues the research and aims at presenting 
the accuracy of a time stepping finite element technique in 
computation of back EMF of the three phase BLDC motor. 
The numerical results are compared with experimental 
measurements presented by Kawase in his article [1]. 
 
Coupled field-circuit model of the BLDC motor  
 In the time – stepping finite element technique for a 
voltage controlled BLDC motor, the inputs are stator phase 
voltages, motor geometry and material characteristics, 
whereas all the other variables such as magnetic vector 
potentials, currents, the rotor position and the rotor speed 
are calculated. For an analysis of the back EMF of the 
motor, the problem is inverse. The prescribed rotor speed is 
an input value and the voltage excitation becomes the 
unknown variable [11].  
 This article presents the analysis of the back EMF with 
an employment of the 3D time - stepping finite element 
method. Fig. 1 shows configuration of the motor.  
 The motor field model is represented by the magnetic 
vector potential. The equation that describes the magnetic 
field is written in the cylindrical co-ordinate system. In the 
area of the stator conductor the field equation may be 
represented as 
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The magnetic vector potential A is the magnetic field 
variable,  is a permeability, j is a current density of the thin 
winding and M denotes the magnetization of magnets. In 
this model the eddy current problem is ignored, because the 
stator and rotor are laminated and the iron losses have a 
very small impact on the motor dynamics in this case 
[2,3,7,11]. 

 
 

Fig.1. The BLDC motor configuration  

 
 The stator phase circuit equation for the described 
motor is 
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where s={1,..,3} denotes the phase number, R is a winding 
resistance of a one phase, i is a phase current and u is a 
supply voltage.  
 From the approach (1) the matrix equation system is 
derived, where the weighting functions are the same as the 
shape functions. The solution of the equation (1) is obtained 
by minimizing the corresponding energy functional. The 
minimization is performed by means of the finite element 
method using 27-node, first order cylindrical elements. The 
magnetic vector potential may be expressed by 
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where iN  are the element shape functions and the iA  are 

the approximations of the vector potentials at the nodes of 
the elements. 
 In the time stepping case, the field equation (1) may be 
written in matrix form as follows: 
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(4) )( tttttt   MPICA , 
where A represents the vector of the unknown vector 
potentials, I represents the vector of the unknown phase 
currents, C represents the symmetrical matrix related to the 
magnetic field, P represents the matrix related to the 
winding currents. 
 The equation (2) may be also represented in the 
discrete form: 

(5) ttttttt

tt
ΦURIΦ





 1

=
1

,  

where 

T

ll













 

31

AdlAdlΦ   represents the vector of 

the winding flux linkage, R represents the diagonal matrix of 
the winding resistance. If to substitute QAΦ  , where Q 
represents matrix related to the winding linkage flux, the 
equation (5) may be rewritten as 
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 The field equation (4) and the circuit equation (6) have 
two common variables: magnetic vector potential A and 
current vector I. This way, the following coupled global 
system of equations is obtained [4,9]: 
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 The equation (7) describes the magnetic system 
coupled with the electric circuit when voltage excitation is 
known. In this case winding currents and magnetic vector 
potentials are computed as unknown variables. However,  
when back EMF is computed, as in our area of interest, the 
problem is inverse. Now the input electric circuit is open, 
which means currents do not flow through the windings and 
the voltage excitation, originated from rotating permanent 
magnets, is unknown. In this case the equation (7) may be 
reduced to the following system [1]:  
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where Y is the identity matrix, A and U are unknown and M 
may be treated as an excitation. The system of equations 
(8) describes the field-circuit model exited by movable 
permanent magnets where the field and the induced 
electromotive force in the windings are obtained by 
computation. The presented system of the field equations 
(8) is nonsymmetric and solved at each iteration step by the 
preconditioned bi-conjugate gradient algorithm (BiCG) 
dedicated for the large and sparse linear systems. 
     
Mechanical motion model  
 In the prescribed speed case, the rotor displacement is 
evaluated by solution of the rotational motion equation 
defined for a one degree of freedom:  

(9) 
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where  is the rotor displacement and ω is the rotor angular 
speed. The discrete equation of motion is derived from the 
form of (9). When the rotor speed is known, then 
displacement may be determined using the backward 
Euler’s approximation for the first order equation (9):  

(10) ttttt t    . 

 Each iteration of the motion model solution comprises 
two steps. The first is to determine rotor’s new angular 
displacement for the time step t. The second one is to 
reflect this position in the discretized space.  
 The rotor motion in the electromagnetic field is realized 
with the fixed grid technique. The grid of discretization is 
independent of the rotor position. It is important to provide 
an even discretization () in direction () along which the 
movement is realized to keep the same volume of the 
moving body [3].  
 The rotor displacement in the grid of discretization is 
updated at each iteration step, which is depicted in Fig. 2. 
Thus the time step t should be chosen in a way which 
grants the condition (11): 
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where 
^

  stands for a position in the node of discretization 

grid. If the above inequality is not to be fulfilled, the time 
step is being automatically shortened to t = t / 2 for the 
current iteration. This approach enables to overcome the 
stability loss during the solution of the field equations (8) [5]. 
 The field model (8) and the motion model (10) are 
coupled and solved together at each iteration step [6,8]. 
 

 
 
Fig.2. Mechanical motion iterative implementation    
 
Numerical experiment 
 The numerical technique described in this paper is 
applied to analysis of the three phase BLDC motor. The 
motor has 12 stator slots, 4 per each phase and 4 rotor 
permanent magnets. The half-length 3D model of the BLDC 
motor in cylindrical coordinate system is employed and 
shown in Fig. 3. The discrete grid has 71 478 nodes. Each 
phase includes 200 windings.  
 The numerical model has 170 640 unknown variables, 
where 55 440 unknown Ar, 50 400 unknown Aφ, 64 800 
unknown Az. The BiCG accuracy is set to 1,0 · 10-5. 
 

 
Fig.3. The BLDC motor model 
 
 The model complies the end-coil effect. The back 
electromotive forces induced in stator windings are 
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investigated for prescribed rotor speed equal to 600 rpm. 
Fig. 4. presents comparison of experimental measurements 
[1] with numerical computations.  
 

 
Fig.4. The back EMF course in calculation and measurement 
 

The above figure depicts relation between induced 
voltage in one phase and electrical degree. This proves that 
back EMF value is dependent on rotor position. Due to PM 
poles number 360o electrical corresponds to 90o 

mechanical.  
 Fig. 5 presents back EMF characteristics in all three 
BLDC phases. Voltage courses are shifted 30o mechanical 
due to number of stator poles.  
 

 
Fig.5. The back EMF course in three BLDC phases 
 
 Presented results correspond with measurements and 
other researchers’ calculations. 
 
Conclusions 

In this work, a method of a time - stepping finite element 
method is presented. The proposed model tightly couples 
field - circuit - motion phenomena and enables their 
simultaneous computing at every iteration step. The model 
considers also the permanent magnet effect.  

The model usefulness is depicted on the example of a 
three phase BLDC motor. The stress is put on the back 
EMF calculation, induced in the motor windings by a 
rotating magnetic field from the PM of the rotor moving with 
a prescribed speed. The numerical results show full 
compliance with the experimental results obtained by other 
authors.     
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