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Abstract. Electric arc furnaces (EAFs) are regarded as one of the major sources of voltage fluctuation in power systems which can contribute to a 
phenomenon known as flicker. One of the most convenient ways to mitigate flicker is employing static VAr compensators (SVCs). By employing 
prediction models to forecast EAF reactive power SVC performance can be improved very noticeably. In this paper a Grey system model is 
proposed to predict the reactive power and the efficiency of this method is investigated. 
 
Streszczenie. Łukowe piece elektryczne są jednym w istotnych odbiorników system energetycznego powodujących wahania sieci, znane jako efekt 
flicker. Te wahania można zmniejszać stosując kompensator mocy biernej. W artykule zaprezentowano model Grey’a umożliwiający prognozowanie 
mocy biernej.(Zastosowanie modelu Grey’a do prognozowania mocy biernej w systemie z piecami łukowymi) 
 
Keywords. Electric arc furnace, Reactive power compensation, Grey system theory, Prediction 
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Introduction 

Electric arc furnaces (EAFs) play a very significant role 
in various parts of industry especially in the steel production 
process due to their remarkable performance, accuracy and 
flexibility. The time-varying nature of EAFs introduces a 
phenomenon known as flicker which is mainly considered 
as voltage fluctuations in low frequency range, around 0.5 
to 25 Hz.  

One of the best options to mitigate the effects of flicker 
is to use VAr compensators including Static VAr 
Compensators (SVCs). It should be noted that reactive 
power measurement and thyristor ignition delays can limit 
SVC's ability to compensate flicker. Although faster and 
more solid means of compensation including static 
synchronous compensators (STATCOMs) can be employed 
to improve the compensation process performance, these 
solutions are generally expensive. Hence it seems logical to 
develop approaches to compensate this delay and 
contributes to the enhancement of SVC performance. 
These approaches are mainly based on prediction of EAF 
reactive power consumption for a half-cycle ahead [1]. In [2] 
the reactive power signal is considered as a time series and 
the prediction is made with considering it as an Auto 
Regressive Moving Average (ARMA) process. Time series 
are defined as a collection of data points mainly sampled 
equally in time intervals. The process by which the future 
values are forecasted based on information obtained from 
past and present time is regarded as time series prediction. 
Mainly there are two techniques for time series prediction, 
statistical and artificial intelligence based approaches. 
ARMA can be regarded as statistical models while neural 
network models are mainly perceived as artificial 
intelligence based approaches. Both of these techniques 
have some disadvantages; in non-linear problems, 
statistical models are not as accurate as neural network 
based approaches. They also may be too complex in order 
to predict future values of time series. Neural network 
models, on the other hand, can provide accurate results but 
the major criticism about them is that they demand a great 
deal of training data. 

Grey system theory was first introduced by Deng (1982) 
and since then is frequently used in various fields of science 
including finance, agriculture, economics, engineering, etc 
[3-7]. Some studies conducted into Grey system theory are 
as follows: In [8] Grey system modeling is used to predict 
the yearly peak load of a power system. In [9] several 
different Grey system theory-based models are applied on 
the United States dollar to Euro parity. In some researches 

hybrid methods are used in order to enhance the prediction. 
For instance, in one study, a hybrid method is proposed to 
reduce the error of a dynamically tuned gyroscope using 
wavelet and linear regression techniques integrated into 
grey system model [10]. In an economic application 
fuzzification techniques are used in combination with Grey 
system theory to forecast the stock prices [11]. 

In several papers, various prediction approaches are 
applied in order to forecast reactive power of an EAF. For 
example, stochastic approaches like adaptive filter methods 
Normalized Least Mean Square (NLMS) and Recursive 
Least Square (RLS) [12] and online genetic algorithm [13] 
are used to online calculation of ARMA coefficients to 
predict the reactive power of an EAF and therefore improve 
the compensation process by SVC. However, in 
comparison with statistical models, Grey system is much 
faster and requires less computation cost, and also 
compared with neural network model it requires less data to 
predict. These advantages made grey system an excellent 
choice for predicting arc furnace reactive power. 

In this work, we use Grey system theory to predict the 
reactive power consumption of Mobarakeh Steel Company 
(MSC) and show the superiority of this approach in 
comparison with adaptive filter and online genetic algorithm. 
The organization of this paper is as follows: the concept of 
Grey system theory is given the next section. Data records 
employed in the prediction are introduced in section 3. 
Indices to evaluate the performance of prediction method 
are introduced in section 4. Adaptive filter methods (NLMS 
and RLS) and online Genetic algorithm method are defined 
in Section 5. Prediction results are shown in section 6 and 
conclusions are given in section 7. 

Grey system Theory 
The following are the fundamental concepts used in 

Grey system theory [14-15].  
A) Accumulated Generating Operation (AGO) 

Grey system theory is mainly based on AGO by which 
the raw data will be preprocessed in a way that the output 
data becomes smoother and will have exponential 
characteristics which makes it possible to use first-order 
differential equation to characterize the system behavior. 

It should be noted that time series data can have 
random characteristics, if this randomness is omitted; it will 
become easier to derive any special characteristics of that 
data. The main goal of AGO is to transform an irregular and 
random series of data into a smooth series with less 
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random characteristics. For example, consider the following 
sequence: 

X(0)=(2,4,7,5,9,1) 

 
Fig. 1. The original set of data. 

	

Obviously, X(0) has a great deal of randomness. Let X(1) 
be the first-order AGO of X(0). AGO is defined as: 
(1)      ܺሺଵሻሺ݇ሻ ൌ ෌ ܺሺ଴ሻሺ݅ሻ

௡
௜ୀ଴

		 , ݇ ൌ 1, 2, . . . , ݊. 
    

So X(1) would be: 
X(1)=(2,6,13,18,27,28) 

 
Fig. 2. The processed data by AGO. 
 

By comparing Fig.1 with Fig.2 one can observe that X(1) 
is much smoother than X(0) and has turned into a mono-
increasing series of data.  

B) Grey forecasting model 
Basically, in the grey system theory GM (n,m) denotes 

for grey model. In this case, n stands for the order of the 
difference equation and m shows the number of variables. 
In most cases GM (1,1) is used due to the fact that it is fast 
and require a small amount of computation effort and at the 
same time it has acceptable accuracy. 

An important consideration when using GM (1,1) is that 
only non-negative data can be used, in this way X(1) will 
become mono-increasing. In order to use grey system 
model for prediction the time series data should first be 
subjected to AGO. Assume the initial sequence of data as: 
(2)      X(0)=[ X(0)(1), X(0)(2), ... , X(0)(n)] 
 

Applying AGO we have: 
(3)     X(1)=[ X(1)(1),X(1)(2), ... , X(1)(n)] 
Now using X(1) we generate the mean sequence Z(1) which 
is defined as: 
(4)      Z(1)(k)=0.5X(1)(k)+0.5X(1)(k-1)  , k=2,3,...,n. 
 
The grey model of GM (1,1) can be defined as: 
(5)      X(0)(k)+aZ(1)(k)=b 

By the means of least square method one can solve this 
equation for (a,b): 
(6)     ൫௔௕൯ ൌ ሺܤ்ܤሻିଵ்ܻܤ  
 

Where B and Y can be calculated as: 

ܤ      (7) ൌ

ۉ

ۈ
ۇ
െܼሺଵሻሺ2ሻ 1
െܼሺଵሻሺ3ሻ 1

… …
െܼሺଵሻሺ݊ሻ ی1

ۋ
ۊ
	     

(8)      ܻ ൌ

ۉ

ۈ
ۇ
ܺሺ଴ሻሺ2ሻ
ܺሺ଴ሻሺ3ሻ
…

ܺሺ଴ሻሺ݊ሻی

ۋ
ۊ

  

 

After determining a and b, future values of X(1) (showed as: 
෠ܺ ሺଵሻ(i)) can be obtained using equation (5): 

(9)      ෠ܺ ሺଵሻሺ݇ ൅ 1ሻ ൌ ቀܺሺ଴ሻሺ1ሻ െ
௕

௔
ቁ ݁ି௔௞ ൅

௕

௔
  

Now by using an inverse AGO (IAGO) the future values of 
X(0) can be calculated as: 

(10)     ෠ܺ ሺଵሻሺ݇ ൅ 1ሻ ൌ ቀܺሺ଴ሻሺ1ሻ െ
௕

௔
ቁ ݁ି௔௞ሺ1 െ ݁௔ሻ 

For long input sequences with large amount of data 
another approach is conventional, in this method when a 
new entry is inserted the last data goes out and the number 
of samples which are used in the prediction process will 
remain constant. This method is called Rolling model and it 
requires less computation effort and is faster. 

Data records 
In order to obtain an accurate model to predict system 

reactive power, a large amount of information about the 
nature of EAFs is required. In this paper actual voltage and 
current data of MSC are collected and used to calculate the 
reactive power. A single line diagram of the EAFs system is 
shown in Fig 1. This plant includes a step-down transformer 
to reduce the voltage level from 400 kV to 63 kV for EAFs 
transformers and 33 kV for two SVCs that are aimed to 
mitigate the flicker problem. In practice each SVC includes 
a 108 MVAr TCR and 97.2 MVAr capacitor banks to filter 
the harmonics. 

 

 
Fig. 3. Single line diagram of EAFs installed in MSC [16] 
 

Voltage and currents values are measured at the 
primary side of arc furnace transformer and each data set is 
sampled with 128 μs sampling time (or the sample 
frequency is 7812.5 Hz). Data sets include records that 
cover 100 s of the EAF operation. For efficient operation of 
SVC, it should be provided with a signal that precisely 
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indicates the fundamental reactive power of the furnace. 
One suitable option is the fundamental reactive power of 
the arc furnace calculated at each period with one cycle 
integration period and updated in each half cycle [16]. 
Therefore 100 s data records will produce time series of 
reactive power with 10000 (=100/0.01). 

Prediction performance evaluation 
Because the main concern of this paper is the 

performance of compensators, like SVC, facing flicker 
produced EAFs, some indices will be defined in order to 
assess the performance of SVC using different methods of 
prediction [12, 16]. These indices use PSD of prediction 
error signal e which is the difference between the 
forecasted value and the real value of EAF reactive power 
and is defined as [17]: 

ሺ݂ሻܦܵܲ       (11) ൌ
ଵ

௡௙ೞ
ห∑ ݁ሺݐሻ݁ି௜ଶగ௙௧௡

௧ୀଵ ห
ଶ
   

where N, PSD f and fs, denote the data record length, the 
value of PSD at frequency f and the sampling frequency 
(that is equal to 100Hz for reactive power time series) 
respectively. The first index is flicker mitigation factor (FMF) 
which basically considers weighted prediction error 
corresponding to each data record j and is defined as [16]: 

௝ܨܯܨ      (12) ൌ
∑ ௖ሺ௙ሻ௉ௌ஽ೕ

೜ೞሺ௙ሻమఱ
೑సభ

∑ ௖ሺ௙ሻ௉ௌ஽ೕ
೜ሺ௙ሻమఱ

೑సభ
 

where PSDq
j (f) denotes the PSD associated with the j th 

source reactive power data record in the absence of SVC 
and PSDqs

j (f) denotes the PSD associated with the j th 
source reactive power data record in the presence of SVC 
and c(f)s are the weighting flicker factors proposed by IEC 
[18]. 

In the control systems, prediction of the future can be 
perceived as a high pass band filter which may magnify the 
high frequency components [16]. Therefore, High frequency 
mitigation factor (HMF) which considers frequencies 
ranging from 16 to 25 Hz is used to evaluate the 
performance of the proposed prediction method and 
compare it with conventional approaches. HMF is defined 
as [16]: 

௝ܨܯܪ      (13) ൌ
∑ ௉ௌ஽ೕ

೜ೞሺ௙ሻమఱ
೑సభల

∑ ௉ௌ஽ೕ
೜ሺ௙ሻమఱ

೑సభల
  

Standard deviation (STD) is also used to compare the 
results of the Grey system method with other methods of 
prediction. 

Adaptive filters 
In this paper, the reactive power of EAFs are predicted 

using ARMA based models in order to be compared with 
the results obtained from Grey system. It is proved that 
ARMA model coefficients should be updated as long as 
they are used for prediction intention [12]. In this section 
three different methods are used to calculate the 
coefficients of ARMA models. 

A) NLMS 
NLMS is an adaptive filter by which the coefficients of 

model is calculated and is illustrated by the following 
equations [19-20]: 
ሻݐොሺݍ      (14) ൌ ்ܹሺݐሻݔሺݐሻ     
(15)      ݁ሺݐሻ ൌ ሻݐሺݍ െ     ሻݐොሺݍ
  
(16)     ܹሺݐ ൅ 1ሻ ൌ ܹሺݐሻ ൅

ఓ

௫೅ሺ௧ሻ௫ሺ௧ሻାట
݁ሺݐሻݔሺݐሻ  

   

In the above equations ݍො stands for the predicted value, 
q is the real future value, x denotes vector of time series 
value in the previous time, e (t) is the error signal and w (t) 

signifies the coefficient vector. μ is a parameter that plays a 
very significant role in the algorithm's performance, if its 
value is chosen too large it may make the algorithm 
unstable, on the other hand, small values of μ can reduce 
the convergence speed of the algorithm. 

In this study ARMA (2, 1) is chosen for modeling EAF 
reactive power, in this case the prediction equation using 
NLMS would be 
ݐොሺݍ     (17) ൅ 1ሻ ൌ ݇ଵݍሺݐሻ ൅ ݇ଶݍሺݐ െ 1ሻ ൅ ݇ଷ݁ሺݐሻ 
(18)     ݁ሺݐሻ ൌ ሻݐሺݍ െ  ሻݐොሺݍ

 

B) RLS  
Another adaptation algorithm which is frequently 

employed in various adaptive filters is RLS. In comparison 
to NLMS it converges faster but requires more calculation, it 
can be illustrated using the following equations: 

(19)      ݇ሺݐሻ ൌ
ఒషభ௉ሺ௧ିଵሻ௫ሺ௧ሻ

ଵାఒషభ௫ಹሺ௧ሻ௉ሺ௧ିଵሻ௫ሺ௧ሻ
  

ሻݐොሺݍ      (20) ൌ ܹுሺݐ െ 1ሻݔሺݐሻ   
(21)      ݁ሺݐሻ ൌ ሻݐሺݍ െ   ሻݐොሺݍ
(22)      ܹሺݐሻ ൌ ܹሺݐ െ 1ሻ ൅ ݇ሺݐሻ݁ሺݐሻ 
(23)     ܲሺݐሻ ൌ ݐଵܲሺିߣ െ 1ሻ െ ݐሻܲሺݐுሺݔሻݐଵ݇ሺିߣ െ 1ሻ 
 

Where P, λ and k denote, the inverse of signal 
correlation matrix, a constant near to one and the gain 
vector respectively [12]. 

 
C) Online Genetic 

In online application of genetic algorithm and in each 
sample, error function (fitting function) is calculated based 
on the last L errors. In other words, in online genetic 
algorithm, the fitting function is calculated by the newest 
values of time series in each generation [13]. 
(24)      ௧݂ሺ݅ሻ ൌ ∑ ݁௜

ଶሺ݉ሻ௧
௠ୀ௧ି௅  

ft (i) , ei(m) and L are fitting function at time t for 
chromosome i, the prediction error at time m for 
chromosome i and effective number of samples used in 
fitting function respectively. Parameters of online genetic 
algorithm like execution frequency of algorithm, number of 
samples used in the fitting function, chromosome number 
and generation number should to find properly. Regarding 
the ability of genetic algorithm in online calculation of 
average value of the time series, the prediction relationship 
including the term related to average value is considered 
as: 
ݐොሺݍ      (25) ൅ 1ሻ ൌ ݇ଵݍሺݐሻ ൅ ݇ଶݍሺݐ െ 1ሻ ൅ ݇ଷ݁ሺݐሻ ൅ ݇4 
(26)       ݁ሺݐሻ ൌ ሻݐሺݍ െ  ሻݐොሺݍ

 

The parameters in online genetic algorithm are selected 
as: 

- The execution frequency of the algorithm: once for 
each sample; 

- Number of samples used in calculation of fitting 
function (L): 100; 

- Chromosome number: 30; 
- Generation number in each algorithm execution: 1. 
 

Simulation results 
In this section, two prediction approaches are employed 

to forecast the reactive power consumption of electric arc 
furnaces in MSC. In the first approach the system is 
modeled by ARMA (2, 1) while the model coefficients are 
calculated online by NLMS, RLS and Genetic algorithm. In 
the other method the reactive power is predicted by 
GM(1,1) rolling model. 

Firstly effect of reactive power prediction on the 
enhancement of SVC performance is investigated. Fig. 4 
shows the reactive power consumption of one of EAFs 
regarding to a data record. The SVC is provided by two 
different reference signals, in the first scenario the reactive 
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power consumption of the present sample is considered as 
the reference signal without any prediction. Although, in this 
way the SVC tracks the reactive power demand of the plant, 
the reactive power at the source side is relatively large and 
a huge proportion of EAF reactive power will remain 
uncompensated. On the other hand if the reactive power of 
next sample is predicted by the GM (1, 1) and is given to 
SVC, error signal (the reactive power at the source side) will 
diminish significantly, which illustrates the advantage of 
prediction in compensation of reactive power. Fig 5 shows 
the resulted reactive power at source side when not using 
prediction and for using Grey system for prediction 
according to a portion of one recorded data. 

 
Fig 4. Reactive power consumption of EAF. 

 

In the second scenario, the results of predicting by Grey 
system is compared to those obtained from ARMA (2, 1) 
when using NLMS, RLS and online Genetic algorithm for 
updating coefficients. In this study a GM(1, 1) rolling model 
with entry data interval equal to 5 is employed. Table 1 
presents the standard deviation of reactive power at the 
source side for different compensation approaches for 15 
sets of 100 s reactive power time series. Table 2 shows 
FMF for Different approaches and Table 3 gives HMF of 
these methods. In tables, FMF, HMF and STD are 
calculated as two forms for error signal. In the first form, to 
neglect the initial error in the model coefficients calculation, 
the first 500 samples of the error signal (corresponding to 
the first 5 s) are not taken into account to calculate the 
indices. In the second form, to calculate the indices, the first 
5000 components of the error signal (corresponding to first 
50 s) are ignored. The indices obtained in the first form 
(NSD1, FMF1, and HMF1) reflect the transient performance 
of the algorithm. The steady state performance of the 

algorithm is indicated by the indices obtained in the second 
form (NSD2, FMF2, and HMF2). 

These tables clearly demonstrates that using Grey 
system for prediction of reactive power will have more 
advantages as long as flicker is concerned. The last row of 
each table presents average value of 15 series. It is 
observed that standard deviation and FMF of compensation 
without prediction is approximately 10 times larger than 
predicting with Grey system and HMF is about 4 times 
larger. 

A comparison between compensation of 15 data records 
of reactive power time series using different prediction 
approaches has been drawn by employing the indices 
introduced earlier. In Fig. 6 standard deviation for varies 
methods of compensation are showed. Figures 7 and 8 
present FMF and HMF of these methods. It is observed that 
Grey system prediction method reduces standard deviation 
and HMF very significantly, while it diminishes FMF 
moderately. 

 
Fig 5. Compensation error produced by a) GM(1,1) and b)by using 
no prediction. 

 
Table 1. Standard deviation of reactive power delivered by source for different prediction approaches. 

std2 std1 
Gen Alg. NLMS RLS GM(1,1)No Pred.Gen Alg.NLMSRLS GM(1,1) No Pred. 
0.1630 0.1771 0.20500.07290.2066 0.1559 0.17580.1993 0.0691 0.1999 1 
0.1755 0.2047 0.23280.08470.2245 0.1625 0.19220.2159 0.0765 0.2073 2 
0.1310 0.1433 0.16080.05470.1722 0.1262 0.14810.1568 0.0522 0.1648 3 
0.1317 0.1391 0.14960.06310.2098 0.1394 0.15480.1672 0.0654 0.2012 4 
0.1239 0.1330 0.14190.05920.1914 0.1337 0.14900.1625 0.0630 0.1885 5 
0.1079 0.1140 0.12200.05330.1687 0.1091 0.12240.1313 0.0533 0.1572 6 
0.1269 0.1364 0.14890.07630.2003 0.1375 0.15370.1598 0.0834 0.2242 7 
0.1024 0.1121 0.11390.05440.1685 0.0895 0.11000.1000 0.0530 0.1523 8 
0.1055 0.1128 0.11940.05910.1722 0.0909 0.10740.1031 0.0521 0.1468 9 
0.0959 0.1030 0.10480.05570.1793 0.0792 0.11420.0876 0.0512 0.1399 10 
0.0763 0.0835 0.08190.04930.1683 0.0780 0.10940.0839 0.0499 0.1682 11 
0.0943 0.1018 0.10130.05710.1883 0.1076 0.10350.1220 0.0635 0.2021 12 
0.1414 0.1508 0.15580.07160.2323 0.1414 0.16100.1660 0.0763 0.2225 13 
0.0963 0.1032 0.10200.05910.2080 0.0940 0.12430.0996 0.0577 0.2007 14 
0.0804 0.0866 0.08560.04470.1681 0.0926 0.10350.1012 0.0498 0.1800 15 
0.1168 0.1268 0.13500.06100.1906 0.1158 0.13530.1353 0.0611 0.1837 Avg. 
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Table 2. FMF of reactive power delivered by source for different prediction approaches. 
FMF2 FMF1 

Gen. Alg. NLMSRLS GM(1,1)No Pred.Gen. Alg.NLMSRLS GM(1,1) No Pred.
0.0275 0.01650.01420.00830.08320.0267 0.02130.01330.0079 0.0846 1 
0.0320 0.01990.01910.01020.09410.0274 0.02230.01590.0084 0.0814 2 
0.0160 0.00990.00900.00470.05650.0158 0.01430.00840.0043 0.0524 3 
0.0145 0.01230.01060.00660.08440.0207 0.01950.01390.0081 0.0919 4 
0.0142 0.01060.01060.00640.07780.0211 0.01780.01370.0080 0.0879 5 
0.0118 0.00950.00850.00510.06730.0171 0.01770.01120.0079 0.0765 6 
0.0226 0.01740.01900.01620.12320.0206 0.02260.01730.0149 0.1209 7 
0.0119 0.01010.00910.00690.06880.0121 0.01620.00960.0092 0.0773 8 
0.0156 0.01210.01210.00950.08700.0164 0.01820.01300.0106 0.0914 9 
0.0095 0.00890.00770.00690.07220.0109 0.02050.00910.0102 0.0762 10 
0.0062 0.00630.00600.00570.06270.0066 0.01420.00620.0059 0.0638 11 
0.0093 0.00850.00800.00720.08310.0112 0.01430.00960.0081 0.0909 12 
0.0169 0.01440.01220.01010.12560.0232 0.02800.01510.0123 0.1287 13 
0.0082 0.00860.00780.00680.08630.0085 0.01540.00810.0070 0.0875 14 
0.0060 0.00640.00540.00410.05820.0079 0.00970.00650.0047 0.0658 15 
0.0148 0.01140.01060.00760.08200.0164 0.01810.01140.0085 0.0851 Avg.

  
Table 3. HMF of reactive power delivered by source for different prediction approaches. 

HMF2 HMF1 
Gen. Alg. NLMSRLS GM(1,1)No Pred.Gen. Alg.NLMSRLS GM(1,1) No Pred.

0.5643 0.52750.85340.31051.29890.5851 0.52420.88210.3172 1.3357 1 
0.5698 0.56650.87100.32721.38140.5943 0.57430.92110.3281 1.3881 2 
0.4755 0.48560.74190.28151.24530.5842 0.56190.90770.3092 1.3611 3 
0.5448 0.51350.82160.29581.32150.5900 0.51970.90190.3093 1.3479 4 
0.5486 0.55810.85560.29601.32590.5804 0.53660.83660.2994 1.3269 5 
0.6342 0.57870.90340.30331.30360.6147 0.53620.90530.3266 1.3396 6 
0.4626 0.49840.76630.31161.30020.4642 0.45410.75580.3194 1.3105 7 
0.5742 0.48980.78720.30501.27280.5499 0.45940.78400.3127 1.2769 8 
0.5466 0.48880.80900.29891.29030.5270 0.47880.80110.3037 1.2833 9 
0.6091 0.50560.80140.30261.28390.5662 0.56920.80710.3316 1.2910 10 
0.5598 0.45500.75470.31341.23720.5015 0.41220.68390.2873 1.2696 11 
0.5206 0.47020.75660.31531.30340.5048 0.44510.77540.3176 1.3204 12 
0.5735 0.47810.76680.29321.29420.5250 0.50660.76990.3044 1.3099 13 
0.5116 0.43110.71380.29181.26050.5006 0.40360.69570.2932 1.2626 14 
0.5241 0.48550.76570.30001.26740.5137 0.45700.77180.2993 1.2726 15 
0.5480 0.50220.79790.30311.29240.5468 0.49590.81330.3106 1.3131 Avg.

 
 
 

 
 
 

a) 

 
b) 

 
Fig 6. a) Standard deviation when the first 500 samples are ignored 
b) Standard deviation when the first 5000 samples are ignored. 

 
a) 
 
 

 
b) 

 
Fig 7. a) FMF when the first 500 samples are ignored b) FMF when 
the first 5000 samples are ignored. 
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a) 

 
b) 

Fig 8. a) HMF when the first 500 samples are ignored b) HMF when 
the first 5000 samples are ignored. 

Conclusions 
In this paper Grey system theory was employed to 

predict the reactive power consumption of EAF at the SVC 
bus. GM (1, 1) rolling model with entry data interval equal to 
5 was used for prediction. The results were compared with 
those obtained from ARMA models in which the model 
coefficients were updated using two common adaptation 
algorithms (NLMS and RLS) and a Genetic online 
algorithm. Three comparison indices were introduced to 
measure the effectiveness of these approaches. These 
indices mostly concern about the effects of flicker and 
evaluate the performance of these approaches in relatively 
low frequency. The results confirm the superiority of Grey 
system model as it reduces HMF and standard deviation 
very drastically. Although Grey system prediction model is 
capable of reducing FMF, and has a better performance in 
comparison with other means of prediction, it does not 
mitigate this index as much as it reduces HMF. 
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