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Wannier function applied to quantum cascade lasers modelling 
 
 

Abstract. The presented paper deals with one of processes of modeling Quantum Cascade Lasers from the moment the permitted energy bands 
are determined to specifying Hamiltonian for the device. In the modeling process Wannier quantum states based on Bloch functions are applied. An 
approach to calculate Wannier functions and numerical results illustrating their fundamental properties, as well as their application to determine 
Hamiltonian for the laser structure are presented. 
 
Streszczenie. Prezentowana praca opisuje jeden ze sposobów modelowania Kwantowych Laserów Kaskadowych od momentu wyznaczania 
energetycznych pasm dozwolonych do określenia Hamiltonianu przyrządu. W procesie modelowania wykorzystywane są kwantowe stany Wanniera 
skonstruowane na bazie funkcji Blocha. W ramach artykułu zaprezentowano sposób obliczania funkcji Wanniera oraz wyniki numeryczne ilustrujące 
ich podstawowe właściwości i  zastosowanie podczas określania Hamiltonianu struktury lasera.(Zastosowanie funkcji Wanniera w procesie 
modelowania kwantowych laserów kaskadowych) 
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Introduction 
Semiconductor devices that emit a coherent light beam 

within the regions from medium to far infrared are called 
Quantum Cascade Lasers. Though scientifically recognized 
for a mere dozen of years [1][2], they have been widely 
applied in medicine and mining. 

From researchers’ perspective cascade lasers are low 
dimension devices, where quantum phenomena play the 
major role. Therefore, it takes a complex and expensive 
process to fabricate them, where fine correlation between 
the material parameters and the expected performance 
effects is required. Simulations provide a powerful tool to 
achieve it by properly designing structural design and laser 
parameters, which contributes to lowering engineering 
costs.  

One of the modeling aspects in such lasers is presented 
in this paper. A cascade laser simulator comprises many 
elements, each of them reflecting either the laser structure, 
or a quantum process occurring in operation. A modular 
periodic structure, so called semiconducting superlattice 
(Fig.1), is the main structural element of this device. The 
modules comprise layers of varying thickness of two 
semiconductors or their alloys laid alternatively. Such 
interlayered arrangement generates a varying electric 
potential, which implicitly results in varying probability of 
finding electrons occupying particular layers. As the 
quantum mechanics laws hold there, energy bands in such 
materials split into a number of discrete minibands. 
 

 
 

Fig.1. A fragment of semiconductor superlattice structured with 
AlGaAs layers and GaAs with a depictured d-periodic potential 
produced within the material due to modular semiconductor layers 
arrangement. 
 

A standard cascade laser structure within one period 
can be divided into two regions (see Fig.2), namely the 
active and the injection one. 

 
 
Fig. 2. The fundamental principle of quantum cascade laser 
operation. The electrons tunnel from the injection region to the 
upper state (3) of the superlattice next period, which is followed by 
a transition into a lower state (2) and a photon emission. In the next 
stage the electron undergoes a transition onto the lowest state (1) 
accompanied with a phonon emission, then it is transported further 
by the electric field through the injection region into the higher state 
of the next structural period (3’), where the whole sequence of 
transitions between the states is repeated.  
 

In the active region, which comprises one or few 
quantum wells, three energy states can be recognized, 
namely the upper (3), the lower (2) and the ground one (1). 
The electron undergoes transition from the upper level onto 
the lower one, tunneling at the same time to the next well. It 
is a radiative transition, thus accompanied with photon 
emission of energy equal to the difference in the energy 
between the subbands. Then, the carrier undergoes a 
transition to the ground level of the well, this time the 
transition is radiationless, and its energy is absorbed by the 
lattice in a form of a phonon. It is for the injection region to 
absorb the electron from the active region ground state and 
to made it injected onto the upper state (3’) of the next 
active region. It means that one electron provides the 
source of many photons, thus such lasers are characterized 
with high output power. 

Modeling a quantum cascade laser implies numerical 
methods to be implemented that allow to determine 
quantum states and describe the phenomena related to 
transport of charge carriers located in a periodical potential. 
Under a joined PR-ITE research project a simulation 
method based on the nonequilibrium Green function theory 
[3] operating within the real space base was developed. 
Yet, the proposed approach requires substantial processor 
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capacities, and vast operational storage resources for the 
computers dedicated to such calculations, thus a more 
efficient method is under concurrent development [4]. The 
latter operates within the state space base, exploiting non-
equilibrium Green functions. Wannier functions play a 
significant role in this method [5], as they provide for the 
very structural element of the energy states occurring in 
both photon and phonon emission processes.  
A process for constructing Wannier states, and the way 
they are used while simulating a typical quantum cascade 
laser [6] are also presented in this paper. 

Model for cascade laser structure 
The presented paper deals with a non-symmetrical 

superlattice of a semiconductor layer structure arrangement 
typically applied in technological solutions for quantum 
cascade lasers. The fundamental material is composed of 
two GaAs/Al0.15Ga0.85As layers laid interchangeably, which 
forms a superlattice module. Specific layers thickness in nm 
are 7.8/2.4/6.4/3.8/14.8/2.4/9.4/5, respectively. Such a 
structure was fabricated and reported by Hans Callebaut in 
2005 [6].  

A numerical model for the structure referred to above, is 
presented in Figure 3. It is composed of n modules of d 
length each, comprising the layer arrangement explained 
above, which produces a periodic potential modeling the 
bottom conduction band EC – in  structure ,where difference 
in values between the quantum well bottom and the 
energetic barrier height equals ΔEC=150 meV. Under 
thermodynamic equilibrium within a semiconductor single 
layer (zj<z<zj+1) a constant potential Vj and a uniform 
composition of material represented with electron effective 
mass parameter mj were assumed.  

 

Fig. 3. A structural model for a cascade laser fabricated on 
GaAs/Al0.15Ga0.85As superlattice base. The illustrated case 
represents thermodynamic non-equilibrium. The model comprised 
an infinite number n of d length modules, each composed of the 
layer arrangement decoded in nanometers as 
7.8/2.4/6.4/3.8/14.8/2.4/9.4/5, where Al0.15Ga0.85As regions are 
marked in bold. Such conducting layers produce a periodic 
potential, which models the energy scheme of the bottom of the 

material conduction band - Ec with the difference in values between 
the quantum well bottom and the energetic barrier height ΔEC=150 
meV. 

When voltage is applied to the structure under this 
model it functions as recalculated to one superlattice period. 
The superlattice model presented in Fig. 3 is an infinite one. 
Its specific properties have been described elsewhere [4].  

Determining permitted minibands 
Permitted energy minibands within the structure of the 

considered laser have been calculated with one of the 
numerical methods applied to solving the Schrödinger 
equation. By this method, called Transfer Matrix 
Formulation [5]  a solution in a form of the following function 
is sought 

(1)  
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where relation: 
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includes the electron effective mass mc,j and potential Vj for 
the j-th layer of the heterostructure with the following 
continuity conditions at the region border: 
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By the Bloch condition: 
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where q is the Bloch vector component in z axis direction,  
we obtain a matrix equation: 
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N index denoted the number of layers within a superlattice 
period, while MN  stands for the transition matrix in the form: 

(8)  














 



jjjj

jjjj

wik
j

wik
j

wik
j

wik
j

N
ee

ee

)1()1(

)1()1(

2

1




M  

with wj = zj+1 - zj and 
jcj

jcj

j mk

mk

,1

1,




  

Solving equation (6) allows to determine the permitted 
energy ranges for the cascade laser structure under 
consideration, as well as the dispersion relation E = E(q). 
The results of this part of simulation are presented in Table 
1 and in Fig. 4.  

Table 1. The permitted minibands ranges calculated with TMF 
method for the considered cascade laser structure. 

miniband Energy range 
[eV] 

a 0.0146625 - 0.0146678  

b 0.0290264 - 0.0292115 

c 0.0337528 - 0.0340779  

d 0.0506446 - 0.0511524 

e 0.0619844 - 0.0625063 
 

As shown in the Table 1 the value ranges are very 
narrow for the permitted energy bands, hence they were 
coined as minibands. In Fig. 4 the results are presented as 
dependencies of the permitted energies for the five lowest 
energy minibands on the Bloch vector component in the 
direction of z axis.  

For the purpose of this paper the simulation results the 
dispersive relations Bloch functions presented in the form 

(1) are replaced with Bloch states )(zq
 , derived by 

applying the dispersion equation denoted as [5]:  

 (9)  
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Bloch states in their new formulation make the permitted 
energy E within the miniband ν dependent on the Bloch 
vector component (q), in the direction where charge carriers 
are transported, i.e. z axis. 

Fig. 4. Permitted energy minibands in the considered cascade laser 
structure presented as dependent on the Bloch vector z axis 
component Eν(q). The A part shows a blown fragment of Ea(q)  

According to Kramers degeneration theory it can be 
noted that )()( qEqE   and -π/d < q <π/d. The 

parameter 
hT  in equation (9) determines the hopping 

coefficient between the minibands  

Bloch states and Wannier functions. 
Each energy of a particular miniband corresponds to 

one Bloch function, whose form within each structure layer 
is described by (1).  

Fig. 5. Module dependencies for the selected Bloch states for the 
five minibands lowest in the energy domain. The state upper index 
denotes the miniband, while the lower one reflects the plotted Bloch 
vector component (q). The plotted functions are set against 
periodic potential generated by the superlattice structure. 
 
 Bloch states derived by applying relation (9) are 
illustrated in Fig. 5. Selected modules of complex Bloch 
function for q=0 within each considered miniband are 
plotted. The zero component Bloch vector – q denotes the 
bottom permitted band energy for minibands a, c, e while 
the energy of the permitted band node for minibands b, d. 
 Periodicity of the 5 states presented in Fig. 5 within the 
superlattice module is very characteristic; it results from 
applying an infinite superlattice model complemented with 
Bloch conditions. It is also easy to note that the lowest 
states are strongly localized, whereas the higher the state, 
the weaker localization within the single quantum well 
occurs. It is related to the width of the quantum wells 
forming a superlattice module. The widest well localizes 

within itself the lowest energy state, while subsequently 
wider wells localize further higher and higher energy states.  
 The phases of complex Bloch states are of significant 
importance for cascade laser simulations within an 
indefinite model (IM) approach.  
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Fig. 6. Phase dependencies for three selected Bloch states for the 
lowest in the energy domain miniband denoted as a. The values for 
the Bloch vector component q were selected to represent the 
miniband middle and extreme parts. 

 Phase dependencies for the selected Bloch states within 
the first miniband are pictured in Fig. 6. It shows that for the 
studied laser structure, the complex Bloch functions phases 
vary irregularly. Still, they are greatly shaped by the places 
where zero initial phases are assumed. It all shapes the 
final form quantum states take applied to define the device 
Hamiltonian; the latter will be discussed further in the paper. 
 Bloch states obtained by applying equation (9) on the 
one hand allows the continuous miniband to be discretized 
with respect to the Bloch vector component and, on the 
other, facilitates Wannier functions to be calculated in the 
form [5]: 
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 Wannier functions, obtained with (10) provide a solution 
to the Schrödinger equation, alike Bloch functions, but they 
are not its eigenstates, i.e. they do not correspond to the 
eigenenergies of the system. Selected dependencies for the 
modules of the complex Wannier functions for the five 
minibands lowest in the energy domain are depicted in Fig. 
7. It displays non-periodic and non-localised functions 
obtained on the base of relation (10) with zero values for 
the Bloch function initial phase set. These are indicated by 
lower indices of particular Wannier function as parameter 
values zfo. 
 Wannier functions presented in Figure 7, though 
relatively easy to calculate, do not have a form suitable for 
the cascade laser simulation method, as it requires 
functions to be maximally localized. To obtain such a 
maximally localized Wannier state the initial phases of the 
complex Bloch function it is formed with, shall be selected 
to generate maximum values of the real part, preferably 
within one quantum well and one superlattice period. 

Then, the imaginary part of the Wannier state values 
practically equal zero over the entire state. Under the 
presented research the maximum localisation for each state 
was attained by applying numerical procedures that 
analysed both real and imaginary values of Wannier 
function, as well as the values of the integral enveloped by 
them for various initial phase values of Bloch functions they 
are generated by. 
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Fig. 7. Dependencies of modules for the selected Wannier 
functions for the five minibands lowest in the energy domain. The 
upper index of the particular function denotes the miniband code, 
whereas the lower one corresponds to zero value of the complex 
Bloch states initial phase. 
 

 

Fig. 8. Dependencies of the real ( )Re( 2830

a
nmzfW 

) and  imaginary 

( )Im( 2830

a
nmzfW 

) parts for the maximally localised Wannier 

functions for the first miniband denoted as a. The values for zfo 
variable given in the function lower index indicates where the Bloch 
states initial phase become zero. In order to correlate the function 
dependence within the laser structure better, it is set against the 
superlattice periodic potential with numbers 1 to 4 marking the 
subsequent quantum wells comprised within one superlattice 
module  

 In Fig. 8 the real part ( )Re( 2830

a
nmzfW 

) and imaginary 

( )Im( 2830

a
nmzfW 

) part of maximally localised Wannier 

functions for the first miniband, denoted in this paper as a, 
are plotted. It can be observed that, as signalled before, for 
the maximal localisation of Wannier function it is necessary 
for its real part to reach the maximum values within a 
specific quantum well, represented here with well 3, and for 
its real part to be minimised to nearly zero values at the 
same time. Analysing Wannier functions with respect to this 
angle while applying numerical procedures, lead us to the 
results illustrated in Fig. 9, where the squared modules of 
the maximally localized Wannier functions for all the 
minibands dealt with in this paper are plotted. Our results 
confirm results reported elsewhere [7].  

By comparing functions plotted in Fig. 7 and 9 the 
following conclusions can be drawn. Firstly, Wannier 
functions are very sensitive to spatial setting null values for 
Bloch states initial phases in the course of their integration 
(see formula (10)), and secondly, the fact that Wannier 
functions is maximally localised does not correlate with any 

rule on Bloch states initial phase taking zero value. It is 
much evident for the quantum state of the miniband 
denoted as b, which finally localises in the quantum well no 
4 with Bloch function initial phase zero value set at 304 nm. 
Nevertheless, it is enough to shift the null valued of the 
Bloch function initial phase by 2 nm to the left to the value 
of 302 nm (se Fig. 7), for the very state to become clearly 
delocalised. Therefore, it proves not that easy to obtain 
maximally localised Wannier states and it requires further 
numerical research to be performed. 

 
Fig. 9. Dependencies of the squared modules of maximally 
localised Wannier functions for the five minibands lowest in the 
energy domain. The function upper index gives miniband notation, 
whereas the lower one corresponds to the zero value for the 
complex Bloch state initial phase. 

  
Cascade Laser Hamiltonian  

Maximally localised Wannier states are requisite to 
determine a Hamiltonian for the electron in a cascade laser. 
Such a Hamiltonian may take the form of :  

(11) 
scattSL HHHH ˆˆˆˆ    

where SLĤ  stands for the structure Hamiltonian 

disregarding the field, Ĥ  stands for a Hamiltonian where 

electric field was taken into account, whereas scattĤ  

concerns also inelastic electron scattering. Wannier states 
are applied to form the Hamilton matrix for the second and 
third addend of (11). This paper deals with applying these 
states to the process of constructing the Hamiltonian matrix 
where electric field has been taken into account, and which 
can be written as: 

(12) 
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where e stands for electron charge, ξ denotes electric field 
intensity, n corresponds to the number of the superlattice 
period concerned, whose length is represented with 

variable d, k stands for wave vector, while †
n,


ka


 and 
kn,a


 

parameters are state operators of creation and annihilation, 

respectively. The quantity 
lR  is calculated from the 

relation:  

(13) )()( * zzWldzWdzRl
    

called state overlap integral. This relation allows both for 
permitted interstate interaction (indexes μ, ν) and for 
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superlattice period  (index l). The values the overlap 
integrals assume for the maximally localised Wannier states 
are given in Tables 2 and 3.  

Table 2. The overlap integrals values 

lR  calculated with relation 

(12) for the parameter l=0, i.e. interactions within the same 
superlattice period.  

Table 3. The overlap integrals values 
lR  calculated with relation 

(12) for the parameter l=1, i.e. interactions within the adjacent 
superlattice periods. 

 

By analysing the numerical results presented in Tables 
2 and 3 it can be concluded that restricting quantum states 
interactions to the adjacent superlattice periods seems 

reasonable as we can see from the equation 11
0R  (2.907e-7 

+ i 1.061e-37) and 11
1R  (-2.848e-10 – i 3.245e-16) the 

overlap integrals for the adjacent periods (l=1) are 
diminished by circa 4 orders of magnitude, when compared 
to the basic period (l=0). Therefore, neglecting the 
interactions between the superlattice periods farther than 
the adjacent ones, does not significantly influence laser 
operation simulation results, whereas it significantly 
accelerates calculations. It should be stressed, however, 

that for this situation to take place the quantum states used 
for Hamiltonian must be maximally localised. 

Summary  
Under presented research software modules for 

simulating cascade lasers based on the method exploiting 
Wannier functions properties were successfully developed 
and tested. Applying Wannier functions allowed the 
Hamiltonian for the concerned nanodevice to be written as 
an energetic representation, due to the fact that the size of 
the matrix representing this operator is small. With properly 
calculated maximally localised Wannier functions it is 
enough for the simulation process to take into account only 
the interactions between the quantum states of the adjacent 
superlattice periods, which allows the size of the matrix 
representing the total Hamiltonian for the laser to grow 
insignificantly, thus the simulator is effective. 

This work is supported by project  PBS1/B3/2/2012. 
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-5.587e-16) 

(4.643e-9, 
-1.113e-17) 
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1.242e-12) 

5 (1.312e-8, 
9.978e-15) 

(2.834e-9, 
-1.039e-14) 

(1.392e-8, 
-2.989e-14) 

(-3.239e-8, 
-1.242e-12) 

(2.896e-7, 
-7.264e-30) 

 1 2 3 4 5 

1 (-2.84e-10, 
-3.245e-16) 

(1.23e-9, 
-9.345e-15) 

(1.346e-10, 
1.108e-16) 

(-8.96e-11, 
-4.272e-18) 

(1.474e-9, 
-4.609e-14) 

2 (1.874e-10, 
-3.637e-14) 

(4.529e-9, 
-5.168e-13) 

(1.664e-10, 
-8.118e-14) 

(1.731e-10, 
-3.639e-15) 

(-2.529e-10,
-1.344e-13) 

3 (-2.021e-9, 
2.004e-18) 

(3.979e-9, 
-3.463e-15) 

(3.751e-9, 
5.182e-15) 

(-8.05e-10, 
5.393e-17) 

(-6.678e-9, 
-1.248e-13) 

4 (3.927e-10, 
2.298e-17) 

(3.885e-11, 
-4.679e-15) 

(-8.360e-11, 
8.758e-17) 

(5.234e-9, 
-4.759e-17) 

(3.213e-9, 
-7.297e-12) 

5 (2.746e-12, 
9.556e-15) 

(2.231e-9, 
-1.149e-14) 

(3.118e-10,-
2.958e-14) 

(-2.372e-9, 
-1.241e-12) 

(-4.854e-9,
7.030e-13) 








