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On certain transformation properties of Maxwell’s equations

Streszczenie: W prezentowanej pracy analizowane jest zagadnienie przeksztatcenia réwnan Maxwella w prézni dla pewnej klasy transformacji
wspotrzednych czasoprzestrzennych, ktére moga w szczegoélnosci opisywac przej$cie miedzy dwoma uktadami odniesienia poruszajgcymi sie
wzgledem siebie ruchem prostoliniowym z dowolnie zmieniajacg sie predkoscia. Przeksztafcenia rownan Maxwella w prézni dla pewnej klasy

transformacji wspétrzednych czasoprzestrzennych

Abstract: In the presented paper a transformation problem for Maxwell’s equations in a vacuum is analysed within a certain transformation class of
space-time coordinates. They may, in particular, o describe a transition between two reference frames moving with respect to one another in a

single direction at arbitrary varying speed.
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Introduction

In the presented paper a transformation problem for
Maxwell’'s equations in a vacuum is analysed within a
certain transformation class of space-time coordinates. The
transformations under consideration may, in particular,
describe a transition between two reference frames moving
with respect to one another in a single direction at arbitrary
varying speed. Making use of the obtained transformation
dependencies the formulas for a front electromagnetic wave
velocity were derived for a system remaining in a linear
non-uniform motion with respect to an arbitrary system. The
presented work continues our research reported elsewhere
(3], [6].

Transformation class under analysis
We have considered the class of transformed space-
time coordinates defined by the relations

) x=(p1(x',t'), y=y', z=12, t=(02(x',t')

where x, y, z and ¢ designate Cartesian coordinates and
time, respectively, in an arbitrary inertial reference frame,

called hereafter ‘resting’. It is assumed that ¢y i ¢, functions
are invertible, i.e. the Jacobian for the transformation (1) is
non-zero, and 2 times differentiable. An inverse
transformation to (1) can be represented as:

@ x=&(x1), y=y, 2=z, 1'=5(x1)

Formulas (1), (2) can thus in particular describe
transformation relations between two physical reference
frames, i.e. the resting one and the one in a linear motion
relative to the former along the OX axis at an arbitrary
changing velocity. However, it should be noted that the
primed quantities occurring in the general formulation, not
necessarily shall have any direct physical or geometrical
interpretation.

Differential operators

In order to represent Maxwell’s equations in the primed
coordinates it is necessary to express the operation of
differentiation with respect to x, y, z,  as dependent on x’,
y’,z’, t’. Based on (2) these operations can be written as:
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To make the right sides (3) dependent solely on the primed
variables we shall express the derivatives of the functions &,
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and &, as variables of x’ and ¢. Thus we apply operators (3)
to functions ¢, and ¢;:
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From these equations we obtain:

“4)
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(5) ox J ot Ox J ox'
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where:
®) J=00.00, 00 00,

is the Jacobian of the transformation (1). Substituting (5) to
(3) we finally arrive at:

0 _l(a(pz 0  0¢p, 6]

- a Jlor o o o
o _1(0p 8 dp 8
o J\ox' of o ox

Maxwell’s equations in the primed coordinates
In the non-primed reference frame Maxwell’s equations take
the form:

- B
rotE=—a—

Y 5
(3) ¢ ot
divB=0 divE=0
where: B(B,, B,, B.) — denote magnetic induction and
E(E,, E,, E.) the electric field intensity.
Developing the first two equations explicitly (8) and applying
operators (7) to them, following a few more transformations
we obtain:
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Assuming that the primed variables occurring in (9) and
(10) represent the coordinates in the reference frame in
motion, their respective components of both the magnetic
induction and electric field strength shall be directly
dependent on the non-primed field components, not on their
derivatives. This is achievable when the following
hypothesis is assumed

=B/ B, =b B} + b,E';
E1 E| E,=bsE',+bB;

By =b;B; + b,E',

(1 1)

Ey =b,E's+byB,
where coefficients b; generally are functions of variables (x’,
t’). Following certain heuristic premises, specifically to
arrive at the simplest attainable form for the field equations
in the primed system and to keep it consistent with Lorentz
transformations provided that the system is inertial, we

have selected them as follows:
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It allows to separate from equations (9) and (10) the
expressions, which correspond to the components of the
classic Maxwell’s equations; these are grouped on the left
sides of the equations (13) and (14):
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Electromagnetic field equations in
coordinates

As it can be easily observed, equations (12) and (13)
become elegantly simple, provided that functions ¢, ¢

satisfy the relations:
62¢i 62(/’i _
axl2 6t'2

which means that they are solutions to the wave equation:
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Coordinates (x’, ') for which the required relations are
met, are called harmonic coordinates; their role in the
theory of gravity by Einstein-Hilbert [1] is also very
important. For this transformation class the electromagnetic
field components (11) are transformed into the primed
coordinates with relations as :
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whereas the field equations take a form strikingly similar to
the classic Maxwell’'s equations, namely
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Lorentz transformations, for which J = 1, provide a particular
case for this coordinate transformation class.

Electromagnetic wavefront equation in the primed
coordinates

The problem of determining the electromagnetic wave
velocity in non-inertial systems is seldom in literature, and
individual standpoints authors report are not always clear
and unique [2]. The considerations presented in this paper

allow to develop the formula for the velocity of the plane
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electromagnetic wavefront in a non-inertial system being in
a linear motion with respect to an arbitrary inertial system in
the direction parallel to the direction the wave propagates
along.

A general equation describing how the electromagnetic
wavefront propagates, which applies also to gravitational
waves [1], has the form:

2 2 2 2
(24) [la_w) _ (6_60) (22 +(5_w) 0
c Ot Ox Oy oz
where: o(x, y, z, t) = 0 - stands for the surface equation of

the wavefront.
For the plane wave:
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By applying transformation (7) we obtain
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which can be also written as
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On the surface of the wave described in the primed
system by the relation a)(x‘,t‘)=0 the variables x’ and ¢
are interdependent, whereas

_ax'
dt'
denotes the velocity of the wavefront. To determine its

value we applied the characteristics method [4]. The
solution to the equation (28) can be expressed with

w= a)(n) where 77 = n(x’,t") describes characteristics, that

(30) v

is for each characteristics 7 = const. Thus:
dn _0n Onde
dt' o ox'dt'

Noting that characteristics must satisfy an equation
analogous to (29), as

(31)
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we find the following formula for the wavefront velocity
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It is worth observing that for harmonic variables v=*c.
Similarly, such considerations can be performed for a
spherical wave, as in a spherical coordinate system the
equation (26) will be formulated identically, with x
coordinate replaced by r.

Conclusions

a) Having transformed the inertial frame time-space
coordinates (x, ¢) under one-to-one arbitrary
transformation into (x’, #’) the electromagnetic field
equations can be formulated with the relations (13) —
(14).

b) The electromagnetic field equations (see (16)) in
harmonic coordinate system take an especially simple
and elegant form, nearly identical to the one in the
inertial reference frame (see (20) — (23)).

c) In an arbitrary reference frame remaining in arbitrary
linear motion with respect to the inertial reference frame
the velocity of a plane electromagnetic wave
propagating in parallel to the relative velocity of the
reference frames can be given by (33). Shall the
coordinates of the reference frame in motion be
harmonic ones, such velocity equals the velocity of light
in a vacuum in the inertial reference frame.
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