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Transformations of space-time coordinates and electromagnetic 
field equations in non-inertial reference frames 

 
 
Abstract. In the presented paper a procedure allowing to identify a transformation for space-time coordinates from inertial to non-inertial reference 
frame in a linear motion (a generalised Lorentz’s transformation), as well as the electromagnetic field forms in this reference frame. 
 
Streszczenie. W prezentowanej pracy zaproponowano procedurę znajdowania transformacji współrzędnych czasoprzestrzennych z inercjalnego do 
nieinercjalnego układu odniesienia poruszającego się ruchem prostoliniowym (uogólnienie przekształceń Lorentza) oraz postaci równań pola 
elektromagnetycznego w tym układzie. Znajdowania transformacji współrzędnych czasoprzestrzennych z inercjalnego do nieinercjalnego 
układu odniesienia poruszającego się ruchem prostoliniowym 
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Introduction  

In the presented paper a procedure allowing to identify a 
transformation for spacetime coordinates from inertial to 
non-inertial reference frame in a linear motion (a 
generalised Lorentz’s transformation), as well as the 
electromagnetic field forms in this reference frame. The 
method is based on the analysis of the electromagnetic field 
generated by a charge travelling at variable speed, defined 
with the formulas for retarded Liénard – Wiechert potentials. 
The paper continues research reported elsewhere [1], [2]. 

Procedure for finding a transformation for spacetime 
coordinates  

As a starting point for further considerations we adopted 
the analysis of the problem on calculating the distribution of 
an electromagnetic field emitted by a point charge Q 
travelling through a vacuum in a linear motion at usually 
variable velocity u with respect to an arbitrary inertial 
reference frame, called hereafter the resting system. Within 
this system we define Cartesian spacetime coordinates 
adopting OX axis to be parallel to the charge velocity 
vector. At first we need to specify transformation 
relationships transposing these coordinates to the 
coordinate system defined for Q charge, hereafter called  
the system in motion, whose axes are parallel to the axes of 
the resting system (each respectively), whereas its origin is 
placed at Q charge. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The systems under analysis 

Having assumed that y’=y, z’=z, we seek the functions 
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In this specified physical case the vectors for position r0, 
velocity  u and acceleration a of the Q charge in the resting 
system at   time can be written as: 
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With no limitations to problem generality we have 
assumed that at  time the origins of both systems overlap.  

It could be proven with Lienard-Wiechert formulas that x 
component of the electric field E1 on the OX (y = z = 0) axis 
emitted by Q charge at t time can be expressed by the 
relation [1]: 
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As the electromagnetic signals propagate within the 
resting system with the velocity c, thus the t time (5) is 
retarded with respect to  time by a time fraction R/c, hence: 
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It is widely known that for transformations between two 
inertial reference frames the field components that are 
parallel to the direction of the relative velocity of the 
systems are invariable [3], [4]. Guided by this premise we 
adopt a postulate that in the considered case we also have: 
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which along with (5) and Coulomb-like dependence of this 
component on the distance in the resting system means 
that  
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By analogy we can write the inverse relations to (7) and 
(9): 

                  
c

)(0 



xx

t  

                  )()(0   gxxx  

where )(0  x  represents the distance between the origins 

of the coordinate systems measured in the system in 
motion at ’ time; similarly as for  time we assume that at 
’ = 0 the charge Q remains at the origin of the resting 
system. By the axiom on relative velocities between two 
arbitrary reference frames providing their equal value and 
opposite direction, that is: 
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we obtain:  
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From (9) and (11) we have: 
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Having differentiated this equity by  and following few 
simple operations we provide a relation: 
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By applying the equations (7), (9), (10), (11), (14), (15) 
the sought transformation relations between the coordinates 
of the two systems (1), (2) can be finally specified. The 
procedure runs as follows: 
1. Defining the relation  = (t  x/c) by solving the 
algebraic equation (7) with the function x0 = x0() given. 

2. Substituting  =  (t  x/c) to (9) provides the first of 
the relations sought for  txx ,1 . 

3. Defining the relation ’ = F() on the grounds of (15) and 
the inverse relation  = F’(’). 
4. Defining the relation )(00   xx  by substituting it to (14) 

 = F’(’). 
5. Defining the relation ’ = ’(t’x’/c) by solving the 
equation (10). 
6. By substituting ’ = ’(t’x’/c)  to (11) we find the second 
relation sought  txx  ,1 . 

7. Solving the set of equations  txx  ,1 , 

 txx ,1 with respect to t and t’ completes the 

transformation set (1), (2) with functions 2, 2.  
The main difficulty of the procedure lies in the necessity 

of solving non-linear algebraic equations (7) and (10), 
usually quite  complex in form, i.e. dependent on the 
function         x0 = x0() which describes how the system in 
motion travels with respect to the resting one, therefore it is 
most often performed numerically. In practice it may prove 
helpful for calculations that within relatively wide range of 
velocities, i.e. up to ca 0.8 c, the g function expressed with 
formula (6) can be safely approximated with a linear 
function (Fig. 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Plot of the function g = g(u/c) expressed with (6)  

Differential relations  
To obtain the electromagnetic field equations for the 

system in motion it is necessary to start with defining 
differential operators with respect to x, t coordinates as 
variables of x’, t’ coordinates. On the ground of (1), (2) we 
can generally write: 
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By using (9) we arrive at: 
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while (6) and (11) used give: 
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Having substituted (18, 19) into (17) we get : 
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where: 
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Making use of (10) we calculate derivation if the function ξ2, 
arriving at: 
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and with the formula (14):  
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 From this equation we can calculate 
t


and then 

substitute it to (22) which yields: 
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Similarly, we obtain: 
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And finally: 
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Transformations for function class more general than 
the ones resulting from formulas (4), (5) are presented in 
[2].  
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Electromagnetic field equations in the system in motion  
By applying the operators (27), (28) to sourceless Maxwell’s 
equations: 
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their explicit form in the system in motion can be finally 
written as: 
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that is we assume field components not to be dependent 
on acceleration and to transform according to standard 
Lorentz transformation [3], and: 
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To derive equations (30), (31) the following relations 
have been used 
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Summary  
The presented procedure for finding spacetime 

coordinates transformation between an inertial system and 
a system travelling in a linear motion with respect to the 
inertial one, proved to be rather complex. The main difficulty 
lies in obligatory solving non-linear algebraic equations 
generally intricate in their form, which customarily requires 
numerical methods to be employed. 

The derived formulas (27, 28) expressing differentiation 
operation with respect to the inertial system coordinates as 
dependent on the differentiation operation in the non-inertial 
system, facilitated finding the equations that describe the 
electromagnetic field in the system in motion. 

Under the assumed relation between the components of 
magnetic and electric field vectors in both systems to be 
taking a form analogous to Lorentz transformation, the 
electromagnetic field equations that held in the non-inertial 
system (30), (31) were found. In the equations parts 
dependent on acceleration, expressions that are dependent 
on some recurrent combinations of transverse field 
components draw attention (34); their physical interpretation 
requires further research and analyses. 
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