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Abstract. In the presented paper are compared the following variants of the scalable diffusion layer in the PP-2 cipher design: auxiliary 
permutation Prm of the PP-1 cipher, a single rotation ROR1, a multiple rotation ROR2, and involution P of the PP-1 cipher. Permutations 
Prm, ROR1 and ROR2 are not involutions, and their different, inverse permutations must be used during decryption. Application of them 
leads to a non-involutional substitution-permutation network. 
 
Streszczenie. W prezentowanym artykule porównano następujące warianty skalowalnej warstwy dyfuzji w projekcie szyfru PP-2: pomocniczą 
permutację Prm szyfru PP-1, pojedynczą rotację ROR1, wielokrotną rotację ROR2 i inwolucję P szyfru PP-1. Permutacje Prm, ROR1 i ROR2 nie są 
inwolucjami i ich różne, odwrotne permutacje muszą być użyte podczas deszyfrowania. Ich zastosowanie prowadzi do nieinwolucyjnej sieci 
podstawieniowo-permutacyjnej. (O konstrukcji skalowalnego P-bloku). 
 
Keywords: block cipher, P-box construction, differential cryptanalysis, linear cryptanalysis. 
Słowa kluczowe: szyfr blokowy, konstrukcja P-bloku, kryptoanaliza różnicowa, kryptoanaliza liniowa. 
 
 

Introduction 
In [1, 2, 3, 4, 5, 6] is proposed an n-bit (n = 64, 128, 192, 

256, ...) scalable block cipher PP-1 (Fig. 1, Fig. 2), which is 
an involutional substitution-permutation network (SPN). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. One round of PP-1 (i = 1, 2, ..., r) 
 

PP-1 is a symmetric block cipher designed for platforms 
with limited resources, especially with restricted amount of 
memory needed to store its components. It uses one 88 bit 
S-box S, which is an involution (i.e. S = S−1), and one n-bit 
scalable P-box P, which is also an involution (i.e. P = P−1). 
As a result the same network is used in both encryption and 
decryption phases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Nonlinear element NL (j = 1, 2, ..., t) 
 

Main role of the permutation P [7, 8] is to scatter 8-bit 
output subblocks of S-boxes S in the n-bit output block of a 

round. In round #r, where r depends on n (r = 11, 22, 32, 
43, ...), permutation P is the identity operation. For round #i, 
where i = 1, 2, ..., r−1, the permutation P is constructed 
using two algorithms, i.e. the auxiliary algorithm (Fig. 3) for 
the construction of auxiliary permutation Prm, and the main 
algorithm (Fig. 4) for the construction of permutation 
(involution) P. 

 

 
 
 
 
 
 
 
 
 

Fig.3. Algorithm for the construction of auxiliary permutation Prm  
 

 
 
 
 
 
 
 
 
 

Fig.4. Algorithm for the construction of permutation P (rounds #1 to 
#r−1) 

 

The PP-1 cipher is designed considering its resistance 
against differential and linear cryptanalysis [9]. In [6] its 
quality is compared to the quality of a comparative 
algorithm with the same block length, as well as to the 
quality of the class of balanced Feistel ciphers, and in 
particular to DES quality. In [10], however, is presented a 
differential attack on the PP-1 cipher, with use of multiple 
differential approximations, which increases the number of 
required rounds, r, by 1, 2, 4 and 5, respectively (r = 11+1, 
22+2, 32+4, 43+5, ...). The redesign of the PP-1 cipher is 
discussed in [11, 12]. 

In the presented paper are compared the following 
variants of the scalable diffusion layer in the PP-2 cipher 
design: auxiliary permutation Prm of the PP-1 cipher, a 
single rotation ROR1, a multiple rotation ROR2, and 
involution P of the PP-1 cipher. Permutations Prm, ROR1 
and ROR2 are not involutions, and their inverse 
permutations, which are different, must be used during 
decryption. Application of them in the diffusion layer implies 
a non-involutional SPN. 
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Prm(v, nBb, nSb) 
{argument, number of block bits (e.g. 64), 
  number of S-box bits (e.g. 8)} 
1.  nS  nBb div nSb            {number of S-boxes} 
2.  Sno  v mod nS +1         {S-box number (from 1)} 
3.  Sb  (v  1) div  nS + 1   {S-box bit (from 1)} 
4.  y  (Sno  1) nSb + Sb   {value of auxiliary permutation} 
5.  return y 

P(pno, nBb, nSb)     
{pair number (from 1), number of block bits (e.g. 64), 
 number of S-box bits (e.g. 8)} 
1.  y  Prm(pno, nBb div 2, nSb div 2)       {value of Prm}  
2.  pv  2 pno  1    {odd argument (value) of involution} 
3.  py  2 y              {even value (argument) of involution} 
4.  return (pv, py) 
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Permutation 
The general algorithm Prm, presented in Fig. 3, is used 

for the construction of a scalable P-box Prm. The algorithm 
calculates bit mappings in permutation Prm in order to 
scatter nSb-bit input subblocks of the permutation in its 
nBb-bit output block. The value of nBb is assumed to be a 
multiple of nSb, and the number v of input bit and the 
number y of output bit belong to the set {1, 2, ..., nBb}. 

For nBb = 64 and nSb = 8 permutation Prm transforms 
byte number i of the input block, where i = 1, 2, ..., 8, in bit 
number i of each byte of the output block, with cyclic shift 
(rotation) by one byte to the right. E.g., for i = 1 we have: 

 
(1)  (1,2,3,4,5,6,7,8)  (1,9,17,25, 33,41, 

49,57)  (9,17,25,33,41,49,57,1). 
 
In Fig. 5 is shown diffusion for permutation Prm in the 

case of nBb = 64 and nSb = 8. The round function is 
restricted to the substitution and permutation layers. For 
simplicity we assume that the round keys are xored with the 
input data at each round, and therefore the key addition 
layers have no influence on diffusion. In an S-box is done 
the local diffusion, i.e., each output bit of an S-box depends 
on any of its input bits. P-box is responsible for the global 
diffusion, i.e., dependence of each bit of the cipher output 
block on any bit of its input block. In Fig. 5 by dots are 
denoted bits dependent on bit number 1 after 
transformations in consecutive layers. All bits of the output 
block are dependent on bit number 1 after 3 layers, i.e., 
after 2 rounds. 

In the more general case of nBb = t64 and nSb = 8, 
where t = 1, 2, ..., the global diffusion is obtained after t + 1 
rounds. 

 
 
 
 
 
 
 
 
 
 

 
 
Fig.5. Diffusion for permutation Prm (nBb = 64, nSb = 8) 

 

Permutation Prm for nBb = 64 and nSb = 8, in 
representation of 64-bit blocks as 88 bit matrices, is 
presented in Tab. 1. The bytes in the rows of the input 
matrix A are denoted by letters from a to h, and their bits 
are denoted by digits from 1 to 8. Each row of the input 
matrix A is transformed by permutation Prm in one column 
of the output matrix B. 

 

Table 1. Permutation Prm for 88 bit matrices (nBb = 64, nSb = 8) 
 

a1 a2 a3 a4 a5 a6 a7 a8  a8 b8 c8 d8 e8 f8 g8 h8
b1 b2 b3 b4 b5 b6 b7 b8  a1 b1 c1 d1 e1 f1 g1 h1
c1 c2 c3 c4 c5 c6 c7 c8  a2 b2 c2 d2 e2 f2 g2 h2
d1 d2 d3 d4 d5 d6 d7 d8 Prm a3 b3 c3 d3 e3 f3 g3 h3
e1 e2 e3 e4 e5 e6 e7 e8  a4 b4 c4 d4 e4 f4 g4 h4
f1 f2 f3 f4 f5 f6 f7 f8  a5 b5 c5 d5 e5 f5 g5 h5
g1 g2 g3 g4 g5 g6 g7 g8  a6 b6 c6 d6 e6 f6 g6 h6
h1 h2 h3 h4 h5 h6 h7 h8  a7 b7 c7 d7 e7 f7 g7 h7

 

The basic algorithm computing the value of permutation 
Prm, which performs the transformation A => B of matrices 
from Tab. 1, is presented as algorithm 1. The algorithm 
computes the consecutive bytes of the output matrix B by 
composition of single bits of the input matrix A. 

Algorithm 1. Basic algorithm computing the value of permutation 
Prm (nBb = 64, nSb = 8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 2. Fast algorithm computing the value of permutation 
Prm (nBb = 64, nSb = 8) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For permutation Prm there exists a relatively fast 
software implementation, based on transposition of bit 
matrices, with previously performed cyclic shift (rotation) of 
rows by 1 bit to the right. E.g., for byte a in Tab. 1 we have: 

 

(2)  (a1,a2,a3,a4,a5,a6,a7,a8)  (a8,a1,a2,a3, 
a4,a5,a6,a7)  (a8,a1,a2,a3,a4,a5,a6,a7)T. 

 

The fast algorithm computing the value of permutation 
Prm, which performs the transformation A => B of matrices 
from Tab. 1, is presented as algorithm 2. The algorithm first 
reads consecutive bytes of matrix A into 32-bit words x, y 
and in these words it performs cyclic shift of the bytes by 1 
bit to the right. Then, in words x, y, is done transposition of 
matrix A [13]. After transposition, consecutive bytes of x, y 
are written to matrix B. Algorithm Prm2 is more than three 
times faster in comparison to algorithm Prm1 (Tab. 4). 

procedure Prm2(var A,B:TByte); 
{type TByte = array[1..8] of byte;} 
var x,y,t:LongWord; 
begin 
    
   {read A} 
   x := A[1] shl 24 or A[2] shl 16 or A[3] shl 8 or A[4]; 
   y := A[5] shl 24 or A[6] shl 16 or A[7] shl 8 or A[8]; 
 
   {rotate A in bytes} 
   x := ((x shl 7) and $80808080) or ((x shr 1) and $7F7F7F7F); 
   y := ((y shl 7) and $80808080) or ((y shr 1) and $7F7F7F7F);   
 
   {transpose A} 
   {16 matrices 2*2} 
   t := (x xor (x shr 7)) and $00AA00AA; x := x xor t xor (t shl 7); 
   t := (y xor (y shr 7)) and $00AA00AA; y := y xor t xor (t shl 7); 
   {4 matrices 2*2} 
   t := (x xor (x shr 14)) and $0000CCCC; x := x xor t xor (t shl 14); 
   t := (y xor (y shr 14)) and $0000CCCC; y := y xor t xor (t shl 14); 
   {1 matrix 2*2} 
   t := (x and $F0F0F0F0) or ((y shr 4) and $0F0F0F0F); 
   y := ((x shl 4) and $F0F0F0F0) or (y and $0F0F0F0F); 
   x := t; 
 
   {write B} 
   B[1] := x shr 24; B[2] := x shr 16; B[3] := x shr 8; B[4] := x; 
   B[5] := y shr 24; B[6] := y shr 16; B[7] := y shr 8; B[8] := y; 
 
end; 

  
1 

Prm

S S S S S S S S

S S S S S S S S

procedure Prm1(var A,B:Tbyte); 
 {type TByte = array[1..8] of byte;} 
begin 
  B[1] := (A[1] and      1) shl 7 or (A[2] and     1)  shl 6 or 
             (A[3] and      1)  shl 5   or (A[4] and     1)  shl 4 or 
             (A[5] and      1)  shl 3   or (A[6] and     1)  shl 2 or 
             (A[7] and      1)  shl 1   or (A[8] and     1)         ; 
  B[2] := (A[1] and 128)          or (A[2] and 128)  shr 1 or 
             (A[3] and 128)  shr 2  or (A[4] and 128)  shr 3 or 
             (A[5] and 128)  shr 4  or (A[6] and 128)  shr 5 or 
             (A[7] and 128)  shr 6  or (A[8] and 128)  shr 7; 
....................................................................................... 
 
  B[8] := (A[1] and   2)  shl 6  or (A[2] and     2)  shl 5 or 
             (A[3] and   2)  shl 4  or (A[4] and     2)  shl 3 or 
             (A[5] and   2)  shl 2  or (A[6] and     2)  shl 1 or 
             (A[7] and   2)   or (A[8] and     2)  shr 1; 
end; 
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Rotation 
Let us first consider the case of a single rotation in the 

permutation layer of a SPN cipher. For block length nBb in 
bits, which is a multiple of an even number nSb of S-box 
bits, we define the single rotation by nSb/2 bits to the right: 

 
(3)  ROR1 = ROR(nSb/2). 

 
For the number of S-boxes nS = nBb/nSb the global 

diffusion is obtained after nS rounds. E.g., in the case of 
nBb = t64 and nSb = 8, where t = 1, 2, ..., the global 
diffusion is obtained after t8 rounds. Thus, for the single 
rotation ROR1 in the permutation layer, the diffusion speed 
is very low. 

Fast algorithm ROR1 computing the value of the single 
rotation ROR1, which performs transformation A => B of 
88 bit matrices (nBb = 64 and nSb = 8), first reads 
consecutive bytes of matrix A into 32-bit words x, y. Then, is 
performed cyclic shift (rotation) of the 64-bit word x||y by 4 
bits to the right. Finally, the consecutive bytes of x, y are 
written to matrix B. Algorithm ROR1 is more than five times 
faster in comparison to the basic algorithm, similar to 
algorithm Prm1 (Tab. 4). 

Let us now consider the case of a multiple rotation in the 
permutation layer of a SPN cipher. For block length in bits 
nBb = t64 (t = 1, 2, ...) and the number of S-box bits nSb = 
8, we define the multiple rotation to the right: 

 
(4)  ROR2 = ROR(12, [1]) + ROR(28, [2]) + 
   ROR(44, [3]) + ROR(60, [4]), 

 
where ROR denotes the rotation by a specified number of 
bits to the right for the following classes of bits: 

 
(5)  [1] = {1, 5, ..., t64–3}, [2] = {2, 6, ..., t64–2}, 
  [3] = {3, 7, ..., t64–1}, [4] = {4, 8, ..., t64–0}. 
 

In Fig. 6 is presented diffusion for rotation ROR2 in the 
case of nBb = 64 and nSb = 8. All bits of the output block 
are dependent on bit number 1 after 3 layers, i.e., after 2 
rounds. Rotation ROR2 transforms bits numbered 1–8, 
dependent on bit number 1 after substitution S, as follows: 

 
(6)  ROR2(1) = ROR(12, 1) = 13, 
  ROR2(2) = ROR(28, 2) = 30,  
  ROR2(3) = ROR(44, 3) = 47,  
  ROR2(4) = ROR(60, 4) = 64,  
  ROR2(5) = ROR(12, 5) = 17, 
  ROR2(6) = ROR(28, 6) = 34, 
  ROR2(7) = ROR(44, 7) = 51, 
  ROR2(8) = ROR(60, 8) =   4. 

 
 
 
 
 
 
 
 
 

Fig.6. Diffusion for multiple rotation ROR2 (nBb = 64, nSb = 8) 
 

Multiple rotation ROR2 for nBb = 64 and nSb = 8, in 
representation of 64-bit blocks as 88 bit matrices, is 
presented in Tab. 2. Each row of the input matrix A is 
transformed by rotation ROR2 into eight rows of the output 
matrix B. 

 

Table 2. Multiple rotation ROR2 for 88 bit matrices 
 (nBb = 64, nSb = 8) 

 

a1 a2 a3 a4 a5 a6 a7 a8  g5 e6 c7 a8 h1 f2 d3 b4
b1 b2 b3 b4 b5 b6 b7 b8  h5 f6 d7 b8 a1 g2 e3 c4
c1 c2 c3 c4 c5 c6 c7 c8  a5 g6 e7 c8 b1 h2 f3 d4
d1 d2 d3 d4 d5 d6 d7 d8 ROR2 b5 h6 f7 d8 c1 a2 g3 e4
e1 e2 e3 e4 e5 e6 e7 e8  c5 a6 g7 e8 d1 b2 h3 f4
f1 f2 f3 f4 f5 f6 f7 f8  d5 b6 h7 f8 e1 c2 a3 g4
g1 g2 g3 g4 g5 g6 g7 g8  e5 c6 a7 g8 f1 d2 b3 h4
h1 h2 h3 h4 h5 h6 h7 h8  f5 d6 b7 h8 g1 e2 c3 a4

 

Variant 1 of the fast algorithm computing the value of 
the multiple rotation ROR2, which performs transformation 
A => B of matrices from Tab. 2, is presented as algorithm 3. 
The algorithm first reads consecutive bytes of matrix A into 
32-bit words x, y. Then, is performed cyclic shift (rotation) to 
the right of the classes of bits [1], [2], [3] and [4] in the 64-bit 
word x||y, by 12, 28, 44 and 60 bits, respectively. Finally, 
the consecutive bytes of x, y are written to matrix B. 

 
Algorithm 3. Fast algorithm computing the value of rotation ROR2 – 

variant 1 (nBb = 64, nSb = 8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Variant 2 of the fast algorithm computing the value of 

the multiple rotation ROR2, which performs transformation 
A => B of matrices from Tab. 2, is presented as algorithm 4.  
The algorithm first reads consecutive bytes of matrix A into 
32-bit words x, y. Then, is performed cyclic shift (rotation) of 
the 64-bit word x||y by 12 bits to the right, and are 
calculated classes [1] and [3] of bits. Next, is done rotation 
to the right of the word x||y by another 16 bits, and are 
calculated classes [2] and [4]. In consequence, the classes 
[1], [2], [3] and [4] are rotated by 12, 28, 44 and 60 bits, 
respectively. Finally, the consecutive bytes of x, y are 
written to matrix B. 

 
Algorithm 4. Fast algorithm computing the value of rotation ROR2 – 

variant 2 (nBb = 64, nSb = 8) 
procedure ROR22(var A,B:TByte); 
{type TByte = array[1..8] of byte;} 
var x,y,t,wx,wy:LongWord; 
begin 
 
   {read A} 
   x := A[1] shl 24 or A[2] shl 16 or A[3] shl 8 or A[4];  {ABCDEFGH} 
   y := A[5] shl 24 or A[6] shl 16 or A[7] shl 8 or A[8];  {IJKLMNOP} 

  
1 

ROR2 = ROR(12, [1]) + ROR(28, [2]) + ROR(44, [3]) + ROR(60, [4])

S S S S S S S S

S S S S S S S S

procedure ROR21(var A,B:TByte); 
{type TByte = array[1..8] of byte;} 
var x,y,t:LongWord; 
begin 
    
   {read A} 
   x := A[1] shl 24 or A[2] shl 16 or A[3] shl 8 or A[4]; 
   y := A[5] shl 24 or A[6] shl 16 or A[7] shl 8 or A[8]; 
 
   {rotate classes [1],[2],[3],[4] of x||y by 12,28,44,60 bits} 
   t := ((x and $88888000) shr 12) or ((y and $00000888) shl 20) or 
        ((x and $40000000) shr 28) or ((y and $04444444) shl 04) or 
        ((y and $22222000) shr 12) or ((x and $00000222) shl 20) or 
        ((y and $10000000) shr 28) or ((x and $01111111) shl 04); 
    
   y := ((y and $88888000) shr 12) or ((x and $00000888) shl 20) or 
         ((y and $40000000) shr 28) or ((x and $04444444) shl 04) or 
         ((x and $22222000) shr 12) or ((y and $00000222) shl 20) or 
         ((x and $10000000) shr 28) or ((y and $01111111) shl 04); 
   x := t;   
 
   {write B} 
   B[1] := x shr 24; B[2] := x shr 16; B[3] := x shr 8; B[4] := x; 
   B[5] := y shr 24; B[6] := y shr 16; B[7] := y shr 8; B[8] := y; 
 
end; 
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Involution 
In involutional SPN ciphers the same algorithm is used 

for encryption and decryption. It is possible thanks to the 
fact that in designing these ciphers are applied involutional 
components, and in particular involutional P-boxes. 

The general algorithm P, presented in Fig. 4, is used for 
the construction of a scalable involutional P-box P (i.e. P−1 = 
P). The algorithm calculates involutional pairs of bit 
mappings in nBb-bit involution P for the bit mappings in 
scalable, auxiliary permutation Prm (Fig. 3). Similar to the 
algorithm Prm, the value of nBb is assumed to be a multiple 
of nSb, and the number pno of calculated involutional pairs 
(pv, py) belongs to the set {1, 2, ..., nBb/2}, where pv, py  
{1, 2, ..., nBb}. An additional assumption is that nSb and, in 
consequence, nBb are even. 

In Fig. 7 is shown diffusion for involution P in the case of 
nBb = 64 and nSb = 8. All bits of the output block are 
dependent on bit number 1 after 5 layers, i.e., after 3 
rounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. Diffusion for involution P (nBb = 64, nSb = 8) 
 
Involution P for nBb = 64 and nSb = 8, in representation 

of 64-bit blocks as 88 bit matrices, is presented in Tab. 3. 
Each row of the input matrix A is transformed by involution 
P into two columns of the output matrix B. 

 
Table 3. Involution P for 88 bit matrices (nBb = 64, nSb = 8) 

 

a1 a2 a3 a4 a5 a6 a7 a8  b2 b7 c2 d7 d2 f7 e2 h7
b1 b2 b3 b4 b5 b6 b7 b8  f2 a1 g2 c1 h2 e1 a2 g1
c1 c2 c3 c4 c5 c6 c7 c8  b4 a3 c4 c3 d4 e3 e4 g3
d1 d2 d3 d4 d5 d6 d7 d8 P f4 a5 g4 c5 h4 e5 a4 g5
e1 e2 e3 e4 e5 e6 e7 e8  b6 a7 c6 c7 d6 e7 e6 g7
f1 f2 f3 f4 f5 f6 f7 f8  f6 b1 g6 d1 h6 f1 a6 h1
g1 g2 g3 g4 g5 g6 g7 g8  b8 b3 c8 d3 d8 f3 e8 h3
h1 h2 h3 h4 h5 h6 h7 h8  f8 b5 g8 d5 h8 f5 a8 h5

 

The basic algorithm, InvP1, computing the value of 
involution P, which performs the transformation A => B of 
matrices from Tab. 3, similarly to algorithm 1, computes the 
consecutive bytes of the output matrix B by composition of 
single bits of the input matrix A. 

 
Algorithm 5. Fast algorithm computing the value of involution P 

(nBb = 64, nSb = 8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For involution P there exists a relatively fast software 
implementation based on transposition of bit matrices. 
Since P is an involution, the transformation A => B of 
matrices is the same as the transformation B => A. The fast 
algorithm InvP2 computing the value of involution P, which 
performs the transformation A => B of matrices from Tab. 3, 
is presented as algorithm 5. The algorithm first reads 
consecutive bytes of matrix B into 32-bit words x, y. Then, 
in words x, y, is done transposition of matrix B [13]. After 
transposition are separately processed odd and even bits. 
Finally, consecutive bytes of x, y are written to matrix A. 
Algorithm InvP2 is about two times faster in comparison to 
the basic algorithm InvP1 (Tab. 4). 

 

Conclusion 
In the paper are compared the following scalable 

diffusion layer functions: auxiliary permutation Prm of the 
PP-1 cipher, a single rotation ROR1, a multiple rotation 
ROR2, and involution P of the PP-1 cipher. Permutations 

   {rotate classes [1],[2],[3],[4] of x||y by 12,28,44,60 bits} 
   {rotate x||y by 12 bits} 
   wx := (x shr 12) or (y shl 20);                {FGHABCDE} 
   wy := (y shr 12) or (x shl 20);                {NOPIJKLM} 
   x := wx and $88888888 or wy and $22222222;        {12, 44} 
   y := wy and $88888888 or wx and $22222222;        {12, 44} 
   {rotate wx||wy by 16 bits} 
   t := wx; 
   wx := (wx shr 16) or (wy shl 16);           {BCDEFGHA} 
   wy := (wy shr 16) or (t shl 16);              {JKLMNOPI} 
   x := x or wx and $44444444 or wy and $11111111;  {28, 60} 
   y := y or wy and $44444444 or wx and $11111111;  {28, 60} 
 
   {write B} 
   B[1] := x shr 24; B[2] := x shr 16; B[3] := x shr 8; B[4] := x; 
   B[5] := y shr 24; B[6] := y shr 16; B[7] := y shr 8; B[8] := y; 
 
end; 

  
1 

P  
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S S S S S S S S

P  
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procedure InvP2(var B,A:TByte); 
{type TByte = array[1..8] of byte;} 
var x,y,w,z,t,w1,w2,z1,z2:LongWord; 
begin 
 
   {read B} 
   x := B[1] shl 24 or B[2] shl 16 or B[3] shl 8 or B[4]; 
   y := B[5] shl 24 or B[6] shl 16 or B[7] shl 8 or B[8]; 
 
   {transpose B} 
   {16 matrices 2*2} 
   t := (x xor (x shr 7)) and $00AA00AA; x := x xor t xor (t shl 7); 
   t := (y xor (y shr 7)) and $00AA00AA; y := y xor t xor (t shl 7); 
   {4 matrices 2*2} 
   t := (x xor (x shr 14)) and $0000CCCC; x := x xor t xor (t shl 14); 
   t := (y xor (y shr 14)) and $0000CCCC; y := y xor t xor (t shl 14); 
   {1 matrix 2*2} 
   t := (x and $F0F0F0F0) or ((y shr 4) and $0F0F0F0F); 
   y := ((x shl 4) and $F0F0F0F0) or (y and $0F0F0F0F); 
   x := t; 
 
   {odd bits} 
   w := (x and $00FF00FF) shl 8 or (y and $00FF00FF);                     

{all odd bits } 
   w := (w and $7F7F7F7F) shl 1 or (w and $80808080) shr 7;        

{abefcdgh - odd after rotation in bytes} 
   t := (w xor (w shr 2)) and $0C0C0C0C; w := w xor t xor (t shl 2);     

{2-bit shuffle} 
   t := (w xor (w shr 1)) and $22222222; w := w xor t xor (t shl 1);     

{a-b e-f c-d g-h - odd shuffled} 
   w1 :=  w and $AAAAAAAA;          {a e c g - odd in bytes} 
   w2 := (w and $55555555) shl 1;   {b f d h - odd in bytes} 
 
   {even bits} 
   z := (x and $FF00FF00) or (y and $FF00FF00) shr 8;                    

{b-f d-h c-g e-a - even shuffled} 
   z1 := (z and $AAAAAAAA) shr 1;   {b d c e - even in bytes} 
   z2 :=  z and $55555555;                 {f h g a - even in bytes} 
 

   {write A} 
   A[1] := (w1 shr 24) or z2;         A[2] := (w2 shr 24) or (z1 shr 24);
   A[3] := (w1 shr 8) or (z1 shr 8);  A[4] := (w2 shr 8) or (z1 shr 16); 
   A[5] := (w1 shr 16) or z1;         A[6] := (w2 shr 16) or (z2 shr 24);
   A[7] :=  w1 or (z2 shr 8);  A[8] :=  w2 or (z2 shr 16); 
 
end; 
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Prm, ROR1 and ROR2 are not involutions, and their inverse 
permutations, which are different, must be used during 
decryption. 

Considering the resistance against cryptanalysis, 
permutation Prm, rotation ROR1 and rotation ROR2 are 
comparable, and better than involution P. 

Considering the diffusion speed, rotation ROR1 is worse 
than involution P, and permutation Prm and rotation ROR2 
are of the same quality, and better than involution P. 

Considering the software implementation speed, the 
best is rotation ROR1, and permutation Prm and rotation 
ROR2 are comparable, and better than involution P (Tab. 
4). 

 

Table 4. Time of 100106 calculations of diffusion layer functions 
(nBb = 64, nSb = 8) 

Algorithm Prm1 Prm2 ROR1 ROR21 ROR22 InvP1 InvP2

Time [s] 11.31 3.406 2.140 3.625 3.187 9.859 5.859 
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