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Prediction-based Active Queue Management in the Internet 
 
 

Abstract. Random early detection (RED) is the most popular active queue management algorithm that is used by the Internet routers. This paper 
proposes a neuro-fuzzy controller which enhances the network performance by dynamically tuning of RED's maxp parameter. The controller first 
learns the network behavior against maxp variations and then adjusts maxp. Simulation results in ns-2 environment show that, the proposed learning 
RED, called LRED, keeps queue length and queuing delay in a pre-determined level and outperforms RED in terms of queue length and stability.  
 
Streszczenie. W artykule zaprezentowano sterownik neuro-fuzzy który poprawia dynamiczne strojenie system RED stosowanego do kolejkowania 
w Internecie. Proponowany uczący się algorytm nazwany LRED pozwala na utrzymanie długości kolejki i opóźnienia w założonych granicach. 
(Aktywne zarządzanie kolejką  w Internecie bazujące na przewidywaniu) 
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Introduction 

RED [3] is the most famous AQM control schemes 
explicitly introduced for congestion control that solves some 
major drawbacks of former approaches such as global 
synchronization. Due to its popularity, RED (or its variants) 
has been implemented by many router vendors in their 
products (e.g. Cisco uses WRED [2]). The basic idea of the 
RED is to detect the congestion by inspecting the average 
queue length at the routers. Before really occurrence of the 
congestion take place, RED drops data packets with 
increasing probability when the average queue length lies 
between two thresholds (minth, maxth) in order to inform 
sources of coming congestion. As a consequence, when a 
TCP source finds out such preventive drops, it reduces the 
sending rate according to the additive increase 
multiplicative decrease (AIMD) algorithm inherent to the 
TCP protocol. As has been addressed in [6, 8, 11], one of 
RED’s main problems is that the average queue size varies 
depending on the parameter settings. On the other hand, 
network operators would naturally like to have a rough a 
priori estimation of the average delays in their congested 
routers. To achieve such predictable average delays, RED’s 
parameters must be adjusted dynamically based on the 
current traffic conditions. A second, related weakness of 
RED is that the throughput is also sensitive to the traffic 
load and to RED parameters. In particular, RED often does 
not operate well when the average queue becomes larger 
than maxp, resulting in significantly decreased throughput 
and increased dropping rates. To cope with this problem it 
is again needed to dynamically tune of RED's parameters 
base on the network conditions. Toward this idea this paper 
is going to keep RED's queue size around a target point by 
dynamic tuning of it's maxp. It proposes a neuro-fuzzy 
based learning procedure that learns the network behavior 
against maxp variations and then adjusts maxp in such a 
way that the network is directed to a target point in which 
queue size is kept around a target queue size. The result is 
a network with a predictable delay. 

 
Random Early Detection 

Random Early Detection algorithm was proposed by 
Floyd and Jacobson [3] in 1993. Figs. 1 and 2 show the 
algorithm and drop function of RED. A router implementing 
RED accepts all packets until the queue reaches minth, 
after which it drops a packet with a linear probability 
distribution function. When the queue length reaches maxth, 
all packets are dropped with a probability of one.  

The RED algorithm, , includes two computational parts: 
computation of the average queue length and calculation of 
the drop probability. 

for each packet arrival 

      calculate the average queue size avg 

     if minth ≤ avg < maxth 

        calculate probability pa 

          with probability pa: 

               mark the arriving packet 

      else if maxth ≤ avg 

              mark the arriving packet 

Fig. 1. General algorithm for RED gateways 
 

The RED algorithm involves four parameters to regulate 
its performance. minth and maxth are the queue thresholds 
to perform packet drop, maxp is the packet drop probability 
at maxth, and w is the weight parameter to calculate the 
average queue size from the instantaneous queue length. 
By making the packet drop probability a function of the level 
of congestion, RED gateway has a low packet-drop 
probability during low congestion, while the drop probability 
increases as the congestion level increases. The packet 
drop probability of RED is small in the interval minth and 
maxth. Moreover, the packets to be dropped are chosen 
randomly from the arriving packets from different hosts. The 
performance of RED significantly depends on the values of 
its four parameters, maxp, minth, maxth, and w. 

 
Fig. 2. RED gateway drop function 

 

This paper proposes an algorithm called LRED 
(Learning RED) that adjusts maxp dynamically to direct the 
network to the target operational point. The applied 
adjustment rules is drawn based on a learning process that 
predicts the network reaction against various amounts of 
changes on maxp value. This learning method is introduced 
in the next section. 
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Learning Method: Locally Linear Neuro-Fuzzy 

The base of Locally Linear Neuro-Fuzzy (LLNF) model 
is dividing the input space to small linear subspaces with 
fuzzy validity functions. Any produced linear part with its 
validity function can be considered as a fuzzy neuron. Thus 
this model is a neuro-fuzzy network with one hidden layer, 
and a linear neuron in the output layer which simply 
calculates the weighted sum of the outputs of locally linear 
neurons as illustrated by equations (1)-(2): 
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This structure is depicted in Fig. 3, where 
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puuuu  is the model input, M is the number 

of LLM neurons, and ijw denotes the LLM parameters of 

the ith neuron. The validity functions are chosen as 
normalized Gaussians as shown in equations (3)-(4); it’s 
necessary for a proper interpretation of validity functions [1, 
4, 12]. 
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Fig. 3. Structure of locally linear neuro-fuzzy model 

 

The M p  parameters of the nonlinear hidden layer 

are the parameters of Gaussian validity functions: center 

( ijc ) and standard deviation ( ij ). Optimization or learning 

methods are used to adjust the two sets of parameters, the 
rule consequent parameters of the locally linear models 

( ij s) and the rule premise parameters of validity functions 

( ijc s and s). Global optimization of linear consequent 

parameters is simply achieved by least squares technique. 

Container of global parameter vector is  1M p   

elements as in equation (5). 
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The associated regression matrix X  for N measured 

data samples are represented by equations (6)-(7). 
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Therefore we will have: 
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Fig. 4. An example Operation of the LOLIMOT algorithm  

 

 

 

 
 
 
 

Fig. 5. Active Queue Management based on neuro-fuzzy prediction 
 

An incremental tree based learning algorithm is 
appropriate for tuning the rule premise parameters [7], i.e. 
determining the validation hypercube for each locally linear 
model. In each iteration the worst performing locally linear 
neuron is determined to be divided. All the possible 
divisions in the p dimensional input space are checked and 
the best is chosen. The splitting ratio can be simply 

adjusted as 1
2 ,  which means that the locally linear neuron 

is divided into two equal halves on the selected input 

dimension. Based on such a division the centers ( ijc ) and 

standard deviations ( ij ) of the new neurons are computed 

and the fuzzy validity functions for the new structure are 
updated according to the equations (10) and (11). The 
center of validity functions are the centers of the new hyper-
cubes, and the standard deviations are usually set as 0.7 as 
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discussed in [5]. The algorithm can be found in [9] but five 
iterations of the procedure for an application with two 
dimensional input space is depicted in Fig. 4. This learning 
algorithm as automatic provides the best linear or nonlinear 
model with maximum generalization, and performs well in 
prediction applications [5, 9]. The error index used in the 
experiments of this study is Normalized Mean Square Error 
(NMSE), which is defined as in (9). 
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where y, ŷ , and  are observed data, predicted data and 

average of the observed data respectively. 
 
Proposed Algorithm: The Learning RED Algorithm 

As said above, in this paper the goal is to design an 
AQM scheme that keeps the queue length robustly in a 
predetermined target region. For this purpose we design a 
neuro-fuzzy based intelligent controller that first learns how 
the network behaves against maxp variations and then uses 
this learned knowledge to direct the network toward the 
desired operational point. As shown in Fig. 5 to design a 
more accurately learning procedure, not only maxp is 
considered as an input parameter, but also we consider the 
current queue length and ΔQueue as other inputs of the 
neuro-fuzzy network. In the other words, the designed 
controller learns that in RED algorithm for a given queue 
length and maxp which adjustment of maxp (i.e. Δmaxp) 
can change the queue size with the amount of ΔQueue. 
Then it simply applies an appropriate Δmaxp to direct the 
queue size to the target range. 
Packet Level Simulation 

In order to evaluate the proposed algorithm, we 
implement it as an extension to RED module of ns-2 
simulator [10]. We present a group of simulation results to 
demonstrate the validity of our design. We demonstrate 
through extensive simulations that LRED can learn and 
stabilize the queue behavior in the router. Our simulation 
uses the reference dumbbell topology, shown in Fig. 6. This 
network has a single bottleneck link with bandwidth of 3 
Mbps, shared by 30 identical and long-lived TCP/Reno 
flows. All non-bottleneck links save bandwidth of 100 Mbps 
and execute drop-tail queue management algorithm. The 
propagation delay from each source to its corresponding 
edge router is 10 ms and the delay between the two routers 
is 30 ms; hence, round trip time (RTT) is 100 ms for all 
connections. The buffer size is set to 100 packets in each 
router. The bottleneck capacity is 3 Mbps and all other links 
have bandwidth of 100 Mbps. The basic parameters of RED 
are selected as follows: minth=15 packets, maxth=75 
packets, maxp=0.01, wq =0.002, interval time = 0.5 second 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. The simulation network topology 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Instantaneous queue length of LRED revolves around the 
target size i.e. 50 packets 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Average queue length for RED and LRED 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. QD comparison 

 
As an example this experiment aims to fix the queue 

size around 50 packets i.e. the target queue length=50 
packets. In general this target queue size is set based on 
the maximum delay that is acceptable for the applications. 

Figs. 7-8 shows the simulation results. In Fig. 7 you can 
see how instantaneous queue sizes of RED and LRED 
evolve during the simulation time. According to this figure 
while RED's queue size remains almost always over maxth 
(75 packets in this simulation), LRED's queue size revolves 
around the target queue length (50 packets in this 
simulation). Success of the proposed AQM algorithm in 
stabilizing the queue size around the target queue length 
can be better seen in the Fig. 8. According to this figure 
LRED's average queue size converges to the target value. 
As another important issue it can be found in this figure that 
average queue size of LRED follows a more stable manner 
and has a minimum level of fluctuations around the target 
queue size. This stable behavior leads to a lower level of 
jitter in compare with the RED algorithm. 

To quantify the stability of various AQM schemes, we 
introduce Queue Deviation (QD) that is computed by using 
equation (10). 
 

 

 

 

 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013                                                                                      299 

(10)             



n

i ref

len

q

iq

n
QD

1

1
)(1

 

 

In this equation qlen(i) is ith sample of queue length, n is 
the number of queue length samples and qref is the target 
queue length that the designer aims to stabilize queue 
length around it. Obviously, lower values of QD refer to low 
level of deviation and equivalently high degree of stability. 
For a stable AQM in which queue length always remains 
around qref, QD approaches to zero. Fig. 9 shows QD 
values for two algorithms. According to this figures, LRED 
has the lowest value for QD and hence offers the most 
stable queue management scheme. 

These simulation results show that LRED has a pre-
determined queue size and is stable around its target size. 
This means that in a network whose queue is managed by 
LRED the queuing delay is predictable (as function of pre-
determined queue size) and has negligible jitter. Hence, 
LRED is a good option for the networks that support real 
time applications such as steaming media. 

These simulation results show that the learning 
algorithm can be an efficient approach to design effective 
AQM algorithms. Due to extreme complexity of AQM 
algorithms it is a very difficult and even impractical to 
develop mathematical or other types of analytical models to 
study how AQM's parameters affect its behavior. As we saw 
in this paper learning is a powerful alternative that extracts 
the nonlinear relation of inputs and outputs of a AQM 
algorithm. Although we applied this idea to study about 
impact of maxp parameter on RED's performance, it can be 
easily applied to study about impact of other parameters as 
well. Also this approach can be employed in other fields of 
computer networks. 
 
Conclusion 

This paper proposed a prediction-based active queue 
management algorithm that keeps queue size around a 
target value that causes to roughly constant queuing delay 
in the network. The proposed controller uses LoLiMoT 
algorithm as learning method of the network behavior, 
learns network's behavior against maxp variations and then 
tunes RED's maxp regarding the target queue size. 
Simulation results showed that this AQM scheme controls 
the queue size successfully and stably around the target 
queue size and hence controls robustly delay and jitter in 
the network. 
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