
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 296

Shahram JAMALI
1
, Mehdi NOSRATI

2
, Seyed Naser SEYED HASHEMI

3

University of Mohaghegh Ardabili (1), Department of computer engineering, Payame Noor University (2), Islamic Azad University(3)

Prediction-based Active Queue Management in the Internet

Abstract. Random early detection (RED) is the most popular active queue management algorithm that is used by the Internet routers. This paper
proposes a neuro-fuzzy controller which enhances the network performance by dynamically tuning of RED's maxp parameter. The controller first
learns the network behavior against maxp variations and then adjusts maxp. Simulation results in ns-2 environment show that, the proposed learning
RED, called LRED, keeps queue length and queuing delay in a pre-determined level and outperforms RED in terms of queue length and stability.

Streszczenie. W artykule zaprezentowano sterownik neuro-fuzzy który poprawia dynamiczne strojenie system RED stosowanego do kolejkowania
w Internecie. Proponowany uczący się algorytm nazwany LRED pozwala na utrzymanie długości kolejki i opóźnienia w założonych granicach.
(Aktywne zarządzanie kolejką w Internecie bazujące na przewidywaniu)

Keywords: Active Queue Management, neuro-fuzzy, LRED.
Słowa kluczowe: Internet, kolejkowanie, RED.

Introduction

RED [3] is the most famous AQM control schemes
explicitly introduced for congestion control that solves some
major drawbacks of former approaches such as global
synchronization. Due to its popularity, RED (or its variants)
has been implemented by many router vendors in their
products (e.g. Cisco uses WRED [2]). The basic idea of the
RED is to detect the congestion by inspecting the average
queue length at the routers. Before really occurrence of the
congestion take place, RED drops data packets with
increasing probability when the average queue length lies
between two thresholds (minth, maxth) in order to inform
sources of coming congestion. As a consequence, when a
TCP source finds out such preventive drops, it reduces the
sending rate according to the additive increase
multiplicative decrease (AIMD) algorithm inherent to the
TCP protocol. As has been addressed in [6, 8, 11], one of
RED’s main problems is that the average queue size varies
depending on the parameter settings. On the other hand,
network operators would naturally like to have a rough a
priori estimation of the average delays in their congested
routers. To achieve such predictable average delays, RED’s
parameters must be adjusted dynamically based on the
current traffic conditions. A second, related weakness of
RED is that the throughput is also sensitive to the traffic
load and to RED parameters. In particular, RED often does
not operate well when the average queue becomes larger
than maxp, resulting in significantly decreased throughput
and increased dropping rates. To cope with this problem it
is again needed to dynamically tune of RED's parameters
base on the network conditions. Toward this idea this paper
is going to keep RED's queue size around a target point by
dynamic tuning of it's maxp. It proposes a neuro-fuzzy
based learning procedure that learns the network behavior
against maxp variations and then adjusts maxp in such a
way that the network is directed to a target point in which
queue size is kept around a target queue size. The result is
a network with a predictable delay.

Random Early Detection

Random Early Detection algorithm was proposed by
Floyd and Jacobson [3] in 1993. Figs. 1 and 2 show the
algorithm and drop function of RED. A router implementing
RED accepts all packets until the queue reaches minth,
after which it drops a packet with a linear probability
distribution function. When the queue length reaches maxth,
all packets are dropped with a probability of one.

The RED algorithm, , includes two computational parts:
computation of the average queue length and calculation of
the drop probability.

for each packet arrival

 calculate the average queue size avg

 if minth ≤ avg < maxth

 calculate probability pa

 with probability pa:

 mark the arriving packet

 else if maxth ≤ avg

 mark the arriving packet

Fig. 1. General algorithm for RED gateways

The RED algorithm involves four parameters to regulate
its performance. minth and maxth are the queue thresholds
to perform packet drop, maxp is the packet drop probability
at maxth, and w is the weight parameter to calculate the
average queue size from the instantaneous queue length.
By making the packet drop probability a function of the level
of congestion, RED gateway has a low packet-drop
probability during low congestion, while the drop probability
increases as the congestion level increases. The packet
drop probability of RED is small in the interval minth and
maxth. Moreover, the packets to be dropped are chosen
randomly from the arriving packets from different hosts. The
performance of RED significantly depends on the values of
its four parameters, maxp, minth, maxth, and w.

Fig. 2. RED gateway drop function

This paper proposes an algorithm called LRED
(Learning RED) that adjusts maxp dynamically to direct the
network to the target operational point. The applied
adjustment rules is drawn based on a learning process that
predicts the network reaction against various amounts of
changes on maxp value. This learning method is introduced
in the next section.

minth maxth

Drop
probability

1

maxp

Avg queue
length

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 297

Learning Method: Locally Linear Neuro-Fuzzy

The base of Locally Linear Neuro-Fuzzy (LLNF) model
is dividing the input space to small linear subspaces with
fuzzy validity functions. Any produced linear part with its
validity function can be considered as a fuzzy neuron. Thus
this model is a neuro-fuzzy network with one hidden layer,
and a linear neuron in the output layer which simply
calculates the weighted sum of the outputs of locally linear
neurons as illustrated by equations (1)-(2):

(1) pipiiii uwuwuwwy  ...ˆ
22110

(2))(ˆˆ
1

uyy i

M

i

i




This structure is depicted in Fig. 3, where

] ... [21

T

puuuu  is the model input, M is the number

of LLM neurons, and ijw denotes the LLM parameters of

the ith neuron. The validity functions are chosen as
normalized Gaussians as shown in equations (3)-(4); it’s
necessary for a proper interpretation of validity functions [1,
4, 12].

(3)
 

 

 
1

i

i M

j

j

u
u

u











(4)

 
   

   

22

1 1

2 2

1

22

1 1

2 2

1

1
exp

2

1 1
 exp exp

2 2

p ipi

i

i ip

p ipi

i ip

u cu c
u

u cu c


 

 

       
   

  

          
  

   

Fig. 3. Structure of locally linear neuro-fuzzy model

The M p parameters of the nonlinear hidden layer

are the parameters of Gaussian validity functions: center

(ijc) and standard deviation (ij). Optimization or learning

methods are used to adjust the two sets of parameters, the
rule consequent parameters of the locally linear models

(ij s) and the rule premise parameters of validity functions

(ijc s and s). Global optimization of linear consequent

parameters is simply achieved by least squares technique.

Container of global parameter vector is  1M p 

elements as in equation (5).

(5)
10 11 1 20 21

0

T

p

M Mp

    


 

 
  
 

The associated regression matrix X for N measured

data samples are represented by equations (6)-(7).

(6)  1 2 ... MX X X X

(7)

       

       

       

1 1 1

2 2 2

i p i

i p i

i

i p i

u u u

u u u
X

u N u N u N

 

 

 

 
 
 

  
 
 
  

Therefore we will have:

(8)  
1

ˆ ˆˆ . ;
T T

y X X X X y 


 

Fig. 4. An example Operation of the LOLIMOT algorithm

Fig. 5. Active Queue Management based on neuro-fuzzy prediction

An incremental tree based learning algorithm is
appropriate for tuning the rule premise parameters [7], i.e.
determining the validation hypercube for each locally linear
model. In each iteration the worst performing locally linear
neuron is determined to be divided. All the possible
divisions in the p dimensional input space are checked and
the best is chosen. The splitting ratio can be simply

adjusted as 1
2 , which means that the locally linear neuron

is divided into two equal halves on the selected input

dimension. Based on such a division the centers (ijc) and

standard deviations (ij) of the new neurons are computed

and the fuzzy validity functions for the new structure are
updated according to the equations (10) and (11). The
center of validity functions are the centers of the new hyper-
cubes, and the standard deviations are usually set as 0.7 as

NF-based

Predictor
Adjust

maxp

ΔQueue, Queue Length, maxp

ΔMaxp

RED
Max

p

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 298

discussed in [5]. The algorithm can be found in [9] but five
iterations of the procedure for an application with two
dimensional input space is depicted in Fig. 4. This learning
algorithm as automatic provides the best linear or nonlinear
model with maximum generalization, and performs well in
prediction applications [5, 9]. The error index used in the
experiments of this study is Normalized Mean Square Error
(NMSE), which is defined as in (9).

(9)

 

 

2

1

2

1

ˆ
n

i

n

i

y y

NMSE

y y





 
 

 
 

 
 





where y, ŷ , and are observed data, predicted data and

average of the observed data respectively.

Proposed Algorithm: The Learning RED Algorithm

As said above, in this paper the goal is to design an
AQM scheme that keeps the queue length robustly in a
predetermined target region. For this purpose we design a
neuro-fuzzy based intelligent controller that first learns how
the network behaves against maxp variations and then uses
this learned knowledge to direct the network toward the
desired operational point. As shown in Fig. 5 to design a
more accurately learning procedure, not only maxp is
considered as an input parameter, but also we consider the
current queue length and ΔQueue as other inputs of the
neuro-fuzzy network. In the other words, the designed
controller learns that in RED algorithm for a given queue
length and maxp which adjustment of maxp (i.e. Δmaxp)
can change the queue size with the amount of ΔQueue.
Then it simply applies an appropriate Δmaxp to direct the
queue size to the target range.
Packet Level Simulation

In order to evaluate the proposed algorithm, we
implement it as an extension to RED module of ns-2
simulator [10]. We present a group of simulation results to
demonstrate the validity of our design. We demonstrate
through extensive simulations that LRED can learn and
stabilize the queue behavior in the router. Our simulation
uses the reference dumbbell topology, shown in Fig. 6. This
network has a single bottleneck link with bandwidth of 3
Mbps, shared by 30 identical and long-lived TCP/Reno
flows. All non-bottleneck links save bandwidth of 100 Mbps
and execute drop-tail queue management algorithm. The
propagation delay from each source to its corresponding
edge router is 10 ms and the delay between the two routers
is 30 ms; hence, round trip time (RTT) is 100 ms for all
connections. The buffer size is set to 100 packets in each
router. The bottleneck capacity is 3 Mbps and all other links
have bandwidth of 100 Mbps. The basic parameters of RED
are selected as follows: minth=15 packets, maxth=75
packets, maxp=0.01, wq =0.002, interval time = 0.5 second

Fig. 6. The simulation network topology

Fig. 7. Instantaneous queue length of LRED revolves around the
target size i.e. 50 packets

Fig. 8. Average queue length for RED and LRED

Fig. 9. QD comparison

As an example this experiment aims to fix the queue

size around 50 packets i.e. the target queue length=50
packets. In general this target queue size is set based on
the maximum delay that is acceptable for the applications.

Figs. 7-8 shows the simulation results. In Fig. 7 you can
see how instantaneous queue sizes of RED and LRED
evolve during the simulation time. According to this figure
while RED's queue size remains almost always over maxth
(75 packets in this simulation), LRED's queue size revolves
around the target queue length (50 packets in this
simulation). Success of the proposed AQM algorithm in
stabilizing the queue size around the target queue length
can be better seen in the Fig. 8. According to this figure
LRED's average queue size converges to the target value.
As another important issue it can be found in this figure that
average queue size of LRED follows a more stable manner
and has a minimum level of fluctuations around the target
queue size. This stable behavior leads to a lower level of
jitter in compare with the RED algorithm.

To quantify the stability of various AQM schemes, we
introduce Queue Deviation (QD) that is computed by using
equation (10).

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 1a/2013 299

(10) 



n

i ref

len

q

iq

n
QD

1

1
)(1

In this equation qlen(i) is ith sample of queue length, n is
the number of queue length samples and qref is the target
queue length that the designer aims to stabilize queue
length around it. Obviously, lower values of QD refer to low
level of deviation and equivalently high degree of stability.
For a stable AQM in which queue length always remains
around qref, QD approaches to zero. Fig. 9 shows QD
values for two algorithms. According to this figures, LRED
has the lowest value for QD and hence offers the most
stable queue management scheme.

These simulation results show that LRED has a pre-
determined queue size and is stable around its target size.
This means that in a network whose queue is managed by
LRED the queuing delay is predictable (as function of pre-
determined queue size) and has negligible jitter. Hence,
LRED is a good option for the networks that support real
time applications such as steaming media.

These simulation results show that the learning
algorithm can be an efficient approach to design effective
AQM algorithms. Due to extreme complexity of AQM
algorithms it is a very difficult and even impractical to
develop mathematical or other types of analytical models to
study how AQM's parameters affect its behavior. As we saw
in this paper learning is a powerful alternative that extracts
the nonlinear relation of inputs and outputs of a AQM
algorithm. Although we applied this idea to study about
impact of maxp parameter on RED's performance, it can be
easily applied to study about impact of other parameters as
well. Also this approach can be employed in other fields of
computer networks.

Conclusion

This paper proposed a prediction-based active queue
management algorithm that keeps queue size around a
target value that causes to roughly constant queuing delay
in the network. The proposed controller uses LoLiMoT
algorithm as learning method of the network behavior,
learns network's behavior against maxp variations and then
tunes RED's maxp regarding the target queue size.
Simulation results showed that this AQM scheme controls
the queue size successfully and stably around the target
queue size and hence controls robustly delay and jitter in
the network.

Acknowledgements
This research was supported by a research grant from

the INSF (Iran National Science Foundation). We express
our thanks to Dr. Morteza Analoui who checked our
manuscript.

REFERENCES

[1] Arani E., Lucas C., Araabi B. N., “WLoLiMoT: A Wavelete and
LoLiMoT Based Algorithm for Time Series Prediction”,
Integrated Systems, Design and Technology, 2010.

[2] Cisco Systems, Congestion Avoidance Overview, Available
from:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios12
0/12cgcr/qos_c/qcpart3.

[3] Floyd, V. Jacobson, “Random early detection gateways for
congestion avoidance”, IEEE/ACM Transactions Networking,
1993.

[4] Gholipour A., Araabi B. N., Lucas C., “Predicting Chaotic Time
Series Using Neural and Neurofuzzy Models: A Comparative
Study”, neural processing letters, volume 24, number 3, 2009.

[5] Gholipour A., Lucas C., Araabi B. N., Mirmomeni M., and
Shafiee M., “Extracting the main patterns of natural time series
for longterm neuro fuzzy prediction,” Neural Computing and
Applications, 2006.

[6] May M., Bolot J., Diot C., Lyles B., “Reasons Not to Deploy
RED”, 7th. International Workshop on Quality of Service, 1999.

[7] Mirmomeni M., Lucas C., Moshiri B., Araabi B. N., “Introducing
adaptive neurofuzzy modeling with online learning method for
prediction of time-varying solar and geomagnetic activity
indices”, Expert systems with applications, Volume 37, Issue
12, 2010.

[8] Misra V., Gong W. Bo, Towsley D. F., “Fluid-based Analysis of
a Network of AQM Routers Supporting TCP Flows with an
Application to RED”, SIGCOMM, 2000.

[9] Nelles O., Nonlinear system identification, Springer Verlag
press, 2001.

[10] Network Simulator-ns2, http://-mash.cs.berkelay.edu/ns.
[11] Ott T., Lakshman T., Wong L., SRED: Stabilized RED,

Infocom, 1999.
[12] Pedram A., Jamali M. R., Pedram T., Fakhraie S. M., Lucas C.,

“Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel
Hardware”, World Academy of Science, Engineering and
Technology, 2006.

Authors: Shahram Jamali, Departmebt of Computer Engineering,
University of Mohaghegh Ardabili, Ardabil, Iran, E-
mail:Jamali@iust.ac.ir;
Mehdi Nosrati, Depatment of computer engineering, Payame Noor
University, I.R. of Iran, E-mail:nosrati@pnu.ac.ir;
Seyed Naser Seyed Hashemi, Young Researcher Club, Ardabil
Branch,. Islamic Azad University, Ardabil, Iran, E-mail:
n.s.hashemi@qiau.ac.ir.

 The correspondence address is:
e-mail: jamali@iust.ac.ir

http://www.sciencedirect.com/science/journal/09574174/37/12
http://www.sciencedirect.com/science/journal/09574174/37/12
http://-mash.cs.berkelay.edu/ns

