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Abstract. To navigate reliably in indoor environments, a mobile robot must know where it is. This paper is concerned with the design of a monocular 
vision-based algorithm for on-line estimation of a mobile robot’s location using circular markers. The algorithm is based on 3-D analytic geometry, 
which is capable of estimating both the orientation and the position of the camera by a single camera image. The method can be used for camera-
robot calibration for eye-on-hand systems, and autonomous mobile robot guidance. Laboratory experiments using a moving cylindrical object 
demonstrate both the accuracy and stability of the method. 
 
Streszczenie: Robot mobilny, aby wiarygodnie nawigować we wnętrzu, musi znać swoje położenie. Opracowanie, w celu oszacowania bieżącego 
położenia robota, koncentruje się na projekcie algorytmu opartego o obraz jedno-okularowy, z zastosowaniem markerów kołowych. Algorytm 
przeprowadza analizę w geometrii 3D, co umożliwia oszacowanie zarówno orientacji jak i położenia kamery na podstawie danych obrazu z jednej 
kamery. Metoda może być zastosowana do kalibracji robota-kamery  w systemie oko-ręka i do sterowania autonomicznym robotem mobilnym. 
Zademonstrowano eksperymenty laboratoryjne z wykorzystaniem obiektu cylindrycznego, analizując zarówno dokładność jak i stabilność metody. 
Jedno-okularowy czujnik wizyjny do lokalizacji autonomicznego robota mobilnego z zastosowaniem markerów kołowych.     
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Introduction 

To navigate reliably in indoor environments, an 
autonomous mobile robot must know where it is, but reliable 
localization and navigation within highly unstructured 
environments is a difficult task. A widely adopted approach 
is the vision-based technique, and there have been 
proposed a variety of vision-based snesing methods such 
as using a stereo camera[1, 2], using a single camera[3], and 
using a laser light projection[4, 5]. However, the sensors 
using a stereo camera need two power sources for two 
cameras. The synchronization mechanisms of two cameras 
are also needed. Those using a laser also need two power 
sources for a camera and a laser. Additionally, the whole 
sizes of these sensors become large, which is inconvenient 
for the robot to carry with. Monocular vision can be used to 
find 3-D position and orientation of an object if the object 
model is known, and estimation of 3-D information from 2-D 
image coordinates by monocular vision is a fundamental 
problem in both machine vision and computer vision. This 
problem exists in two forms: the direct and the inverse[6]. In 
the direct type, the objective is to estimate the 3-D location 
of objects, landmarks, and features. This type of problem 
occurs in many areas: for example, in automatic assembly, 
tracking, and industrial metrology. In the inverse type, the 
objective is to estimate the relevant camera parameters: for 
a fixed camera, all the intrinsic and extrinsic parameters; for 
a moving camera, only the extrinsic parameters, namely, its 
3-D location. This type of problem occurs in areas such as 
camera calibration, camera-robot calibration for eye-on-
hand systems, and autonomous mobile robot guidance. 

A circular shape is the most common quadratic that has 
been addressed for localization due to the following reasons: 
1) many manufactured objects have circular holes or 
circular surface contours; 2) a circle’s perspective projection 
in any arbitrary orientation is always an exact ellipse; 3) a 
circle has been shown to have the property of high image-
location accuracy[7]; and 4) the complete boundary or an arc 
of a projected circle can be used for localization without 
knowing the exact point correspondence. There have been 
some previous work dealing with accurate localization of a 
mobile robot using circular landmarks[8], however few work 
focused on robot localization by circular markers on 
quadratic surfaces. In this paper, the fundamental 
algorithmic principles of the 3-D analytical geometry 

solutions for the localization problem are described, and 
laboratory experiments are done to testify the accuracy and 
stability of the algorithm. Sect. 2 constructed the 
geometrical imaging model of a circle, and introduced the 3-
D analytical geometry solutions for localization of the circles; 
Experiment results and analysis for applying the method to  
localization with a cylindrical object are shown in Sect. 3; 
Sect. 4 is the conclusion. 
 
Method for Localization 

When put the image plane and a circular marker by the 
same side of the camera, camera imaging of the circle can 
be described as a cone model (Fig. 1), where vertex P is 
the center of the camera lens, and ellipse is the perspective 
projection of the circle onto the image plane. Note the circle 
as ξ, the 3-D localization problem can be defined as: given 
a perspective projection of ξ (a 2-D ellipse), and the focal 
length of the camera, estimate ξ’s 3-D location, or in other 
words, estimate the coordinates of the circle’s center C1 and 
the unit surface-normal vector d1. 

 

 

Fig. 1. Geometrical imaging model for circles: a cone 
 

The cone equation can be derived from the image 
ellipse[9]. Note it as: 
(1) 2 2 2 2 2 2 2 2 2 0.ax by cz fyz gzx hxy ux vy wz d           

3-D analytical geometry solutions are applied to solve 
the problem of location estimation of circles. The method is 
based on the idea of firstly estimating the location of the 
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circle in a frame where the cone equation is reduced to its 
central form, then determine the location with respect to the 
camera xcyczc frame by transforming the frame to xcyczc. Let 
XYZ be the canonical frame[10] with Z be the principal axis 
of the cone, and X'Y'Z' be the frame with Z'-axis vertical to 
the circle surface by rotating XYZ, the total transformation 
from X'Y'Z' to xcyczc can be written as 

(2) ccc
TTTT zyxxyzzyxXYZZYX  0123 ''''''  

where T0, T2 are translational, and T1, T3 are rotational 
transformations. Thus the total transformation can be 
written as 

(3)             0 1 2 3 1 2 3

' 1 0 0 0 '

' 0 1 0 0 '

' 0 0 0 '

1 1 0 0 0 1 1

c

c

c

x X X

y Y Y

z Z e Z

       
       
        
       
       
       

T TT T TT T    

     
In the canonical (XYZ) frame, (1) is reduced to a more 
compact form 

(4)                       2 2 2
1 2 3K X K Y K Z      

It has been proven in [10] that Ki are the roots (with K1, 
K2 be positive, K3 be negative) of the discriminating cubic 
equation 

(5)     3 2 2 2 2( ) ( )K K a b c K bc ca ab f g h           
2 2 2( 2 ) 0abc fgh af bg ch        

T1, T2 and the circle’s unit surface-normal vector (l, m, n) 
with respect to XYZ frame are derived from Ki. Thus the unit 
surface-normal vector d: (l0, m0, n0) with respect to the 
camera xcyczc frame is obtained by rotating (l, m, n) as: 

   0 0 0 11 1l m n l m n
  T  

Rotate XYZ frame until Z-axis is vertical to the plane of 
the circle, and define the new frame as X'Y'Z'. The 
rotational transformation T3 is: 
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    The center coordinates (X0', Y0', Z0') with 
respect to X'Y'Z' are obtained as follows: 
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and r is the radius of the circle. Therefore, the center 
coordinates C0: (xc0, yc0, zc0) with respect to xcyczc is 
obtained by substituting (7) into (3). 

 
Experiment Results and Analysis 

The experiment was accomplished in a laboratory 
environment. As shown in Fig. 2, a cylinder object marked 
with paralleled circles was put on the table. A camera took 
pictures of the cylinder object with an elevation angle of α. 
We changed the camera’s 3-D orientation and position four 
times, and took four groups of images. The distance d 
between the camera lens and each of the circles are 
measured as reference values. 

In our experiment, we took d as an indicator of the 
circle’s location because the center is inside the cylinder, 
which makes it impossible to measure. This is reasonable 
since d is strictly determined by the circle’s location. 

 

Fig. 2. Experiment setup 
 

The experiment setup consisted of the following major 
components: a color camera: Nikon (model D80) with 23.6 
× 15.8 mm image sensor, 3872 × 2592 resolution and 10.2 
million effective pixels; a Nikon 135mm f/2D AF-DC Nikkor 
lens; an 500mm(R) × 1m(H) cylinder object marked with 
black and orange circles that paralleled to the cylinder 
underside; an 1.2m(W) × 0.9m(H) calibration board 
contained with 8×6 squares. 

The experiment procedure is as follows: 
1. Camera calibration. Construct the experiment 

setup as Fig. 2. The camera is calibrated by applying the 
flexible plane-based calibration technique[11]. As a result, 
the five intrinsic parameters of the camera (the coordinates 
of the principal point, the scale factors in image u and v 
axes, and the skewness of the two image axes) and the 
radial distortion coefficients are obtained. 

2. Take a few images of the object. Then change the 
camera’s 3-D orientation and position and return to step 1. 
Repeat step 1 and 2 four times and get four groups of 
images. One image is picked up from each group, shown as 
Fig. 3. 
 

 

Fig. 3. Some of the raw images 
 

3. Image preprocess and elliptical-shape edge 
detection. A subpixel edge detector based on the principal 
axis analysis and the moment-preserving principle[12] was 
applied to detect the elliptical-shape edge in the image, 
which resulted in a set of subpixel edge-point data. Edge 
detection results of Fig. 3(b) are shown as Fig. 4(a). Since 
only part of the elliptical shape is visible, direct least square 
fitting of ellipse[13] is done to estimate all the parameters of 
the actual image ellipse. As a result, three image ellipses 
detected from Fig. 4(a) are shown as Fig. 4, from which we 
can see the edge points and the ellipse equations fit well. 
 

 

Fig. 4. Elliptical-shape edge detection results 
 

4. Coordinate transformation and lens radial distortion 
compensation. Using the camera’s intrinsic parameters and 
the radial distortion coefficients, a coordinate transformation 
between the image (u, v) coordinates that expressed in 
terms of pixel units, and the physical (x, y) coordinates that 
expressed in terms of absolute length is formed. 
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5. Apply the coordinate transformation to the ellipse 
equation, so that all the parameters in (1) are obtained. 

6. Estimate the circles’ orientation and position by the 
closed-form solution as described in Sect. 2.2. Use them to 
calculate the distance between the camera and the circles. 

7. Compare the estimated values with reference 
values. 

For each of the four images in Fig. 3, three circles were 
estimated. The application of the above procedure to the 
twelve circles resulted in two sets of data, as shown in Fig. 
5 and TableⅠ. Note that in each group, the circles must 
have the same orientation angles since they were 
paralleled, we define the average orientation angles as the 
mean value of the orientation angles of the circles. Through 
camera calibration, the orientation angles of the surface 
normal of the circles were estimated as reference angles. 
The deviations are defined as the absolute value of the 
difference between the average angles and the reference 
angles. Note α, β, and γ as the angles that the surface 
normal of a circle makes with the xc, yc and zc axis of the 
camera frame, respectively. As can be seen in Fig. 5, no 
matter what 3-D orientation the cylindrical object had, the 
deviations were relatively stable within the range between 
0.44° and 1.38°, and the average deviations for the three 
orientation angles were determined as 1.22°, 0.75°, and 
0.72°, respectively. The results show only a small error 
indicative of the good performance of the total process. 

 

  

Fig. 5. Deviations of the estimated orientation  
 

Table 1. Distance between the camera lens and each circle 
(measurement unit: m) 

Circle No. 1 2 3 4 5 6 
Estimated 
Distance 

4.71 4.90 5.00 3.26 3.24 3.24 

Reference 
Distance 

4.78 4.85 4.91 3.19 3.31 3.38 

Deviations 0.07 0.05 0.09 0.08 0.07 0.14 
Circle No. 7 8 9 10 11 12 
Estimated 
Distance 

2.58 2.45 2.70 3.68 3.56 3.51 

Reference 
Distance 

2.47 2.54 2.60 3.53 3.62 3.60 

Deviations 0.11 0.09 0.10 0.15 0.06 0.09 
Average 
Deviation 

0.09 

 

In Table 1, the location-estimation results of our method 
are presented. The measured distance of the twelve circles 
to the camera lens are given in the row “Reference 
Distance”, while the distance calculated by our method are 
given in the row “Estimated Depth”. The absolute value of 
the difference between the reference and estimated 
distance of all the circles are calculated and given as 
“Deviations”, and the means of these values are given as 
“Average Deviation”. As can be seen, the average deviation 
of the distance is only 0.09m, which is only 2.54% of the 
average reference distance. The results indicate the high 
accuracy of the total process. 
 
Conclusions 

Knowing the position and distance a mobile robot has 
moved is critical to effective operation, but reliable 

localization and navigation within highly unstructured 
environments is a difficult task. In this paper we applied the 
monocular model-based vision to estimate the 3-D location 
of circles. Advantages of the monocular model-based 
method are: (1) small system size and simple system 
structure; (2) closed-form solution using simple 
mathematics; (3) high accuracy; (4) handles all kinds of 
objects with circles, such as objects with circular surface 
contours, objects that have holes, objects with circular 
markers, etc. Laboratory experiments demonstrate that the 
method is capable of estimating both orientation and 
position of a cylindrical object with radius of 500mm within 
5m away from the camera lens. The high accuracy and 
stability of the method are also demonstrated by moving 
and relocating the cylindrical object. 
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