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Abstract. A novel KPLS-PLS batch monitoring and quality prediction approach based on fuzzy clustering soft-partition is proposed to solve the 
stage-transition monitoring and prediction problem in multistage batch processes. The proposed method calculates firstly similarity indices between 
different time-slice data matrices of batch processes, then phase division algorithm is designed by fuzzy clustering based on the similarity index, 
following by a fuzzy membership grade transition identification step. By setting a series of KPLS and PLS models with time-varying covariance 
structures for transitions and steady phases, it reflects objectively the diversity of transitional characteristics, capture the nonlinear relationships 
among process variables of the transition and can monitor and predict batch processes more accurately and efficiently. The superiority of the 
proposed method is illustrated by applying it to industrial application of fed-batch penicillin fermentation process. The results clearly demonstrate the 
effectiveness and feasibility of the proposed method 
 
Streszczenie: Zaproponowano nową metodę KPLS ( kernel partial least squers) – PLS monitorowania i przewidywania wieloetapowych procesów 
wsadowych. Metoda oparta została o klastrowanie rozmyte, pozwala na wykrycie przejść między etapami i dokładniejsze przewidywanie przebiegu 
procesu przez uniknięcie wpływu nieliniowości. Wyższość proponowanej metody zilustrowano wykorzystując ją  do badania przemysłowego procesu 
fermentacji wsadu pożywki penicyliny. Nowa  etapowa metoda KPLS – PLS badania monitoringu i przewidywania jakości procesów 
wsadowych 
 
Keywords: Batch Monitoring, Multiphase, Partial Least Squares, Kernel Partial Least Squares. 
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Introduction 

Batch or semi-batch processes have been utilized to 
produce high-value-added products in the biological, 
pharmaceutical, food, semi-conductor industries. In order to 
get higher productivity, it is necessary to ensure that 
condition of batch processes remains closely fixed around a 
pre-specified trajectory. The common natures of multi-
phase, time-varying, finite duration and batch-to-batch 
variations make batch processes more difficult to control 
than continuous processes. Hence, proper process 
monitoring and quality prediction is important to not only 
quality improvement but also process safety. Multivariate 
statistical methods based on multi-way partial least squares 
(MPLS) proposed by Nomikos and MacGregor [1] have 
been widely employed in batch process monitoring and 
quality prediction. 

In industries, many batch processes are carried out in a 
sequence of steps, which are called multiphase batch 
processes [2]. Different phases may have different process 
natures. Traditional MPLS method takes the entire batch 
data as a single object in modeling. Therefore, the unique 
process correlation information of different phases is not 
reflected. This not only makes difficulties on understanding 
of process nature, but also affects monitoring efficiency. 
Considering that multiple phases with transitions from 
phase to phase are important characteristics of many batch 
processes, it is desirable to develop stage-based models. 
Then each model represents a specific phase and focuses 
on the local behaviors of the batch processes. In recent 
years, different phase-division methods have been 
proposed and different modeling methods have been 
developed that take the phase effects into consideration. 
Kosanovich et al developed two-stage MPLS models to 
analyze the phase-specific nature of a two-phase jacketed 
exothermic batch chemical reactor [3]. Zhao investigated 
multiple PLS models for different operating modes based on 
metrics in the form of principal angles to measure the 
similarities of any two models, which have been applied to 
continuous processes [4]. Lu et al developed a stage-based 
PLS modeling method based on the fact that changes in the 
process correlation may relate to its stages [5]. 

However, the above methods are all strict stage partition 
algorithms, which neglect the stage-to-stage transiting 

characteristics. The misclassification may occur at the 
beginning and end of each stage, because the hard-
partition methods in dealing with patterns between two 
neighboring clusters, and may lead to false alarm and 
missing alarm in on-line monitoring due to  batch variation. 
Moreover, stage nature can be reflected by the process 
variable correlations, and the nonlinear characteristics of 
process are often related with the process stage closely. 
Stage-based multiple PLS models is a partial linearization 
method for the nonlinear batch process in essence. 
However, transition between phase to phase has more 
nonlinear characteristics compared to steady phase, due to 
transitions from phase to phase are important 
characteristics and the corresponding phases in different 
batch processes are uneven lengths. To monitor and 
predict batch processes more accurately and efficiently, the 
nonlinear features of transition are needed to be considered 
carefully. 

In the present article, we present a novel KPLS-PLS 
batch monitoring and quality prediction approach based on 
fuzzy clustering soft-transition. The method proposed here 
solves the above problems. This paper is organized as 
follows. First, the similarity index, the MPLS and KPLS 
monitoring method are outlined and a KPLS-PLS algorithm 
is suggested. Then, the superiority of the proposed 
monitoring method over traditional MPLS is illustrated by 
applying to the industrial penicillin fermentation process. 
Finally, conclusions are given. 
 

Materials and methods 
Similarity index 

 The concept of similarity or dissimilarity is often used 
for classifying a set of data. For example, the dissimilarity 
between two classes is measured and the two classes with 
the smallest degree of dissimilarity are combined to 
generate a new class. To evaluate the difference between 
distributions of data sets, a classification method based on 
the Karhunen-Loeve(KL) expansion is used in this work, 
which is a well-known technique for feature extraction or 
dimensionality reduction in pattern recognition. 

Considering the following two data sets with the same 
number of columns and arbitrary rows, 1

M JX  and 

2
N JX  , the dissimilarity index D is defined as follows[6] 
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Where, j  is the eigenvalue of the covariance matrix of the 

transformed matrix obtained from one data set Xi, which is 

defined as 1/ 2
1 2 0( 1) / ( 2) Pi iN N N X     , where P0

TSP0 

=Λ(Λ is a diagonal matrix whose elements are eigenvalues 
of S) and S=1/(N1+N2-2)(X1

TX1+X2
TX2). J is the number of 

process variables. The dissimilarity index, D, has been 
shown to change between zero and one. Here, each 
column of Xi is assumed to be mean-centered and scaled. 
MPLS. 

 The dataset of a batch process can be arranged as a 
three-way array. A batch run has J input variables (j = 
1,2,...,J) and M output variables (m= 1,2, ... , M) measured  k 
times (k = 1,2,...,K) throughout the batch. Data of the same 
form exist for each of the I batch runs (i = 1,2,...,I) stored in 
a historical database. The three-way array X(I×J×K) can be 
unfolded in three ways, which give rise to the different two-
dimensional matrices .In this paper, the process 
measurements array X is unfolded to X(KI×J) by preserving 
the variable direction. As a result, MPLS decomposes 
X(KI×J) and Y(KI×M) matrices with mean zero into the form. 

(2)       ;     T TX TP E Y UQ F     
Where T(KI×R) and U(KI×R) are the scores, P(J×R) and 
Q(M×R) the loadings and E(KI×J) and F(KI×M) are the 
residuals. This approach has the merits that it does not 
require estimation of future missing values. The unfolded X 
matrix is then related to the quality variable using PLS. 

(3)            PLSY XC V   
Where CPLS is an inner coefficient vector of J×1 and V is a 
residual vector of KI×1.Details on the PLS algorithms can 
be found in Ref[7]. 

For on-line monitoring using MPLS, two statistics, T2 
and the squared prediction error (SPE), are generally 
calculated. T2 is defined as follows and its confidence limits 
can be obtained from the indicated F-distribution 
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where tnew,k(R×1) are the scores of the new batch at time k, 
Λk is the covariance matrix of Tk calculated during 
development of the model. In the proposed approach, we 
use time-varying covariance Λk to replace fixed covariance 
Λ at each time during a batch, which is considered to 
incorporate the major dynamic characteristics of the batch 
process and can obtain better monitoring performance [8]. 
The SPE is defined as the sum of the squares of the errors 
at time k. The confidence limit of SPE can be obtained from 
the following 2  distribution. 

(5)  2
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Where xnew,k(J×1) is new batch data at time k, mk and vk are 
the mean and variance of the SPE at time k obtained for the 
dataset used to develop the model. 
KPLS.  

In general, the PLS can be effectively performed only 
on a set of observations that vary linearly. When the 
variations are nonlinear, the data can be mapped into a 
higher dimensional space in which they vary linearly. 
According to Cover’s theorem, the nonlinear data structure 
in the input space is more likely to be linear after high-
dimensional nonlinear mapping. This higher-dimensional 
linear space is referred to as the feature space. KPLS is 
formulated in this feature space to extend linear PLS to its 
nonlinear kernel form. 

First, consider a nonlinear transformation of the input 

variables xi, i =1,. . .,n into feature space F: xk∈Rm→Φ∈F. 

where it is assumed that  1 ( ) 0N
k kx   , and φ is a 

nonlinear mapping function that projects the input vectors 
from the input space to F. Through the introduction of the 
kernel trick, Φ(xi)

TΦ(xi)=K(xi,xj), one can avoid both 
performing explicit nonlinear mappings and computing dot 
products in the feature space. The matrix of the regression 
coefficient B in the KPLS algorithm will have the form 

(6)       1( )T T TB U T KU T Y   
As a result, when the number of test data is nt(1,. . ., nt), the 
predictions on training data and test data can be made as 
follows, respectively 

(7)  1 1ˆ ˆ( ) ;      ( )T T T T
t t tY B KU T KU T Y Y B KU T KU T Y      

Where, Φt is the matrix of the mapped test points and is Kt 

the (nt×n) test matrix whose elements are Kij=K(xi, xj), where 
xi is the i-th test vector and xj is the j-th training vector. The 
detailed description of KPLS algorithm can be found in the 
work by Kim[9]. 
 
Stage-based KPLS-PLS algorithm 

In this section, a similarity-based phase division and 
transition identification method is proposed. The procedure 
is plotted in Fig.1 and the detailed description is given 
below. 
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Fig. 1. Illustration of fuzzy clustering soft-transition KPLS-PLS 
algorithm 
 

Similarity-based phase division and transition 
identification 

(1)Unfold three-way batch data matrix to X(I×JK), and 
normalize the unfolded data matrix.(2) Reorganize the 
normalized data into a three-way data matrix X(I×J×K) and 
split it into K number of time-slice data matrices Xk(I×J) (k = 
1,2,3,...,K).(3) Calculate similarity index Di(i=1,2,...,K) 
between time-slice data matrices Xi and Xj( j=1,2,…,K and 
i≠j) as follow 

(8)        
         1,2, , 1

( ) ( , )  
1    1, ,   i i j

k j j i
D k dist X X

k j j i K

  
     


  

(4) Cluster the K number of vectors Di into C clusters with 
fuzzy C-means clustering algorithm.(5) At each cluster 
(phase), the values of the maximum membership grade at 
each sample time are plotted on an univariate control plot, 
in order to detect the outliers. The successive outliers occur 
at the beginning and end of each cluster are identified as 
the points in transitions and removed from each cluster. 
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Then, the remained part of each cluster is the range of 
steady phase. 

Transition identification makes use of univariate statistical 
monitoring method to identify the transitions as outliers. The 
reason of doing so is that in each steady phase, the values 
of similarity index between time-slice data matrices should 
be similar, and their distribution can be approximately 
regarded as normal distribution. In contrary, the similarity 
index between the time-slice data matrices in transitions and 
steady phase could be quite different. Thus, the transition 
samples can be detected as outliers with the univariate 
control plots at the beginning and end of each phase. 
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Fig.2. Phase division result              Fig.3.Process nature  
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Fig.4.Transition ranges identification    Fig.5.Sketch map 
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Fig.6. Monitoring results for MPLS and the proposed method in two 
test batches 

 

Phase modelling and transitions modelling 
 After the identification of the ranges of steady phases 

and transitions, the procedure of modeling is given as 
following.(1) At each steady phase, perform improved PLS 
on the steady phase data matrix Xc(ncI×J) and Yc(ncI×M), 
where nc is the number of samples in steady phase c.(2) At 
each transition, perform KPLS on the transition data matrix 
based on variable-wise unfolding Xs(nsI×J) and Ys(nsI×M), 
here ns is the number of samples in transition s.(3) A cross-
validation method based on the predicted residual error sum 
of squares (PRESS) was used to select the number of latent 
variables for the improved PLS and KPLS models.(4) 
Calculate the confidence limits of T2 and SPE statistics at 
each time k (k = 1,2,...,K) based on corresponding steady 
phase or transition model. 

 
 

On-line monitoring and quality prediction 
(1) For new sampling data at time k, xnew,k(1×J), 

normalize it using the same mean and standard deviation 
obtained from the modeling procedure.(2) According to 
process time, project the new data xnew,k onto the 
corresponding steady phase or transition model to calculate 
the latent vectors  tnew,k.(3) According to tnew,k, calculate the T2 
and SPE statistics based on corresponding model.(4) 
Monitor the T2 and SPE statistics of test data whether T2 or 
SPE exceeds its confidence limit calculated in the modeling 
procedure.(5) Predict quality vector y(1×M) using PLS 
regression model according to Eq.3 or KPLS regression 
model according to Eq.7 in the corresponding steady phase 
or transition. Go back to step1 and process the next 
measurement. 

 
Case studies 

In this section, the proposed method was applied to the 
monitoring an industrial penicillin fermentation process. In 
our study, the model has been developed by carefully 
selecting 24 good batched from the history data that reflect 
the normal desired operation of the fermentation. The 9 
variables considered for monitoring include: Temperature, 
pH, Air flow, Agitator current, Culture volume, Sugar feed 
rate, Ammonia feed rate, Phenyl acetic acid feed rate, 
Ammonium sulphate feed rate. The duration of each batch 
was about 212h. The sampling interval is 4h. According to 
the proposed method, the whole fermentation process was 
automatically divided into three steady phases which cover 
the sampling intervals 1~6, 10~21 and 28~54, and two 
transitions which include the sampling intervals 7~9 and 
22~27. 

The phase division results are plotted in Fig.2. Using the 
proposed partition method, the real fed-batch phase is 
divided into two main stages and the whole process is 
divided into three primary stages as well as corresponding 
transition regions. It is clear that the phase division is 
consistent with the process nature. In penicillin cultivation 
process, process nature changes with operation time. Such 
changes can be indicated with the trends of the similarity 
values Sim(k, phase c), as shown in Fig.3. Sim(k, c) is the 
membership grade between the kth time-slice data matrix 
and the cth cluster by FCM given. The values of Sim(k,c) 
changes gradually with the process operation. It becomes 
larger when the process approaching to phase c. During 
phase c, Sim(k,c) keeps large values which indicate high 
similarities between the time-slice data matrices and the 
current cluster-center. When process operates far away 
from phase c, the similarities become small again. The 
gradual changes of Sim(k,c) values at the beginnings and 
ends of phases confirm the existence of transitions from 
phase to phase. 

The univariate statistical process control plots are 
utilized to identify the transition ranges. For each phase, the 
values of dissimilarity 1-Sim(k,c) (k∈c) are plotted in Fig.4. 
As introduced in Section 3.1, the successive outliers at the 
beginning and the end of each phase indicate the transition 
ranges. After transition identification, each steady phase 
and transition range are modeled with the method 
described in Section 3.2. The membership grades are 
plotted in Fig.5. Again, the transition attributes from phase 
to phase are shown clearly. The models that constructed 
using traditional MPLS and the proposed method are then 
tested against monitoring of two different operating states 
batches. 

Fig.6 shows the monitoring results for two batches, a 
normal and a fault batch, using two methods. To normal 
batch, in T2 and SPE monitoring charts of the MPLS (see 
fig.7(a)),  false alarm rates are 5.7% and 7.5% respectively, 
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which significantly deviates from the 1% set value of control 
limit. In contrast, no false alarm in either SPE or T2 
monitoring charts of the proposed method, and it achieves a 
successful monitoring to the normal batch. To fault batch (in 
the fermentation medium, the air flow of fermentation 
process is rapidly reduced by some mechanical failure, but 
due to the operator’s adjustment, the process restore to 
normal operating condition, the final penicillin titer is 
acceptable.), the T2 and SPE values of the proposed 
method increase beyond control limit at time 100h. The 
detection time is faster than that of MPLS by 4h. However, 
the T2 charts of MPLS can not provide good detection, and 
does not give any alarm in the abnormal batch. In addition, 
after the fault is eliminated, MPLS method can not quickly 
shake off the impact of the failure, leading to the false 
monitoring results. The reason is that MPLS ignores the 
multiphase characteristics and takes the batch as whole, 
but the proposed method compensates the shortcoming of 
traditional MPLS. Through comparison of two methods, we 
can draw the conclusion that the proposed method more 
objectively assesses the process of production and the 
effort of operators. 

Fig.7 shows quality prediction results using two methods 
for a normal batch. In addition, choose root mean square 
error (RMSE) as accuracy evaluation criteria, as presented 
in Table 1. RMSE can be calculated as follows 

(9)        2

1

1
ˆ( )

p

i i
i

RMSE y y
p 

   

Where yi is actual quality value, ˆ iy is predictive quality value, 

p is sampling time. As can be seen from the Fig.9 and 
Table.1, KPLS-PLS clearly outperforms MPLS in predicting 
penicillin titer of the batch. Moreover, to original MPLS, 
prediction results of phase 1 and phase 2 (0~100h) is much 
closer to the actual values than those of other phases. It 
indicates that a single model may accurately describe only 
one or several of the phase characteristics, which often 
leads to a larger prediction error under the other phases. 
So, the phase-based approaches are intuitively well suited 
for multi-phase batch process monitoring and quality 
prediction. 
 
Conclusions 

Multiphase/multistage batch processes widely exist in 
industrial applications. These processes can be divided into 
several phases based on variable correlation structure 
changes. In many cases, processes operate from one 
phase to another through gradual transitions. In this work, a 
novel KPLS-PLS batch monitoring and quality prediction 
approach based on fuzzy clustering soft-transition is 
proposed taking the process features of multiple phases 
and gradual transitions into consideration. The proposed 
method reflects objectively the diversity of transitional 
characteristics, extract the nonlinear relationships among 
process variables of transition and can preferably solve the 
stage-transition monitoring problem in multistage batch 
processes. The proposed method was applied to the 
industrial penicillin fermentation process, the results 
indicate that the proposed method is feasible and shows 
good efficiency. 

  
 
 

Table 1. Comparison of RMSE of Two Methods  
 MPLS  KPLS-PLS  

RMSE 0.1034 0.0188 
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Fig.7. comparison of estimation results of Penicillin titer 
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