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Abstract. A method for air combat sensor resource management based on fuzzy Bayesian networks (FBN) is presented. Using the fuzzy value of 
target information gain, target threat level and pilot command, probabilistic reasoning among the networks is carried out. Simulation results indicate 
that FBN method performances better in the allocation of sensor resource compared to information gain (IG) method. 
 
Streszczenie. W artykule przedstawiono zastosowanie sieci Bayes’a (ang. FBN) w zarządzaniu zasobem czujników w czasie walki powietrznej. 
Wykorzystując wartość rozmytą informacji o celu, poziom możliwego zagrożenia oraz komendy pilota, zbudowano sieć argumentowania 
probabilistycznego. Wyniki symulacyjne wykazują, że metoda FBN wykazuje lepsze właściwości alokacji zasobów niż metoda dywergencji 
Kullbacka-Leiblera (DKL, IG).  (Zarządzanie zasobem czujników w walce powietrznej z wykorzystaniem sieci Bayes’a FBN). 
 
Keywords: fuzzy Bayesian networks (FBN); sensor management; target thread; information gain(IG)  
Słowa kluczowe: sieć rozmyta Bayes’a FBN, zarządzanie czujnikami, zagrożenie celu, dywergencja Kullbacka-Leiblera (DKL, IG). 
 
 

Introduction 
In modern air combats, the detecting and tracking 

efficiency of airborne sensors are constrained by the 
number of targets as well as the flexibility, uncertainty and 
resource of airborne sensors. Therefore, the airborne 
sensor management is necessarily to effectively use the 
resource of sensors to fulfill the needs of target detecting 
and tracking.  

There are some studies proposed several methods to 
manage sensor resource based on information theory, for 
example, assignment of sensor resource using comentropy 
in [1,2] and using targets threating weights in [3,4]. 

Compared to the previous methods, this paper proposes 
an airborne sensor resource management method based 
on fuzzy Bayesian networks (FBN) during air combats. This 
method achieves the assignment solution of sensor 
resource，  which is based on FBN constructed by two 
aspects, the causality  of the influence factors of the 
airborne sensor resource management in air battles and the 
probability reasoning using the gain of target information, 
target threatening and orders of pilots, etc. 

 

Probability inference in FBN 
Denoting X1…Xn as the variables of FBN, the joint 

probability distribution can be represented  as follows: 
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whereπ(Xi) is a set of parent nodes of node Xi，and 
P(Xi|π(Xi)) can be determined by the conditional probability 
table.  

The probability inference problem in this paper is mainly 
about posteriori distributions. Using known variables as the 
evidences, denoted by E, and e as its values. The posteriori 
distribution denoted by Q is an query variable. Thus, the 
posteriori probability is: 
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Using Bayes equation, we get 
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P(Q,E)is the joint probability distribution of all the 
variables in a Bayes network. In FBN, all the variables are 
classified fuzzily. Thus, the values of those variables are not 
singular, but multiple values within fuzzy membership sets. 
Therefore, weights are introduced in the calculation of 
posteriori probability as follows； 
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where ωj is the weight of the combination of status, and k is 
the total number of status combinations. Denoting i as the 
index of evidence nodes, which has m nodes in total. The 
number of fuzzy classification for each node is λi, 

then 1
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. Denoting the status combination Sij , then ωj 

can be determined as follows: 
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 is the fuzzy membership value while the 

value of the evidence node i is ei and the status 
combination is Sij. 
sensor resource allocation model based the FBN 

The air combat sensor resource allocation is influenced 
by the increment of target information and the target threat 
level. There is such causal relationship: Increment of target 
information → Sensor resource, Target threat → Sensor 
resource. In the actual air combat, target threat is the 
outcome of the threat assessment, which is determined by 
battlefield situational factors. In addition, the pilot instruction 
can directly interfere the allocation of sensor resource. Thus, 
there is such causal relationship as well: Battlefield situation
→Target threat, Pilot instruction→Sensor resource. “→”
show the causal relationship between the adjacent nodes. 
Based on the above causal relationship and combined with 
the knowledge of expert system, a discrete fuzzy Bayesian 
network (FBN) can be obtained as shown in Figure 1. The 
meaning of each node of Figure 1, as shown in Table 1. 
 
Table 1. Node meaning 

SNS The sensor resources allocated level 
PO The pilot task instruction level 
INF Information incremental level 
TTR Target threat level 
TP Target distance threat level 
TS Target approach speed threat level 
TA Target entry angle threat level 
TT Target type threat level 
TM Target weapons threat level 
MM Machine weapons guide demand level
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Fig. 1 sensor resource allocation discrete fuzzy Bayesian network 
 

Each node is a binary semantic node, which is classified 
by fuzzy knowledge. L represents a low level and M 
indicates a high level. The conditional probability table of 
each node is shown in Table 1. The gray nodes are query 
nodes and the white ones are evidence nodes. 

The precise value of the evidence must be stroked 
before the accurate values of the evidence nodes are 
calculated, then fuzzy processing could be done. The 
accurate value of the evidence nodes and the way to do 
fuzzy processing is shown as follows: 

Nodes INF\TP\TS\TA 
In the process of the airborne sensors achieving 

perception of battlefield, the precise value of the information 
increment (INFp) can be calculated based on the variation 
of the uncertain target is as follows: 
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Where: P(k/k-1) and P(k/k) are the prediction error 
covariance and the filtering error covariance of the targets 
before and after the measuring. 

Target distance (TPP), approaching speed (TSP) and the 
exact value of the entry angle (TAP) can be estimated 
directly by using the target state value of the filter system. 

In the evidence nodes, the affect from the information 
increment, approaching speed and the entry angle to the 
fuzzy classification is benefit-like, which means that the 
lager the precise value is, the higher level of the fuzzy 
classification you will get. The fuzzy subordinate degree can 
be calculated through the increasing of Semi-Gaussian 
distribution function: 
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Target distance affection on the fuzzy classification is 
cost-like, which means that the lager the precise value is, 
the lower level of the fuzzy classification you will get. The 
fuzzy subordinate degree can be calculated through the 
decreasing of Semi-Gaussian distribution function: 
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In (7) and (8), α is the discriminator threshold and k is 
the proportionality coefficient. They can be gained from the 
experts’ experience, for example, the discriminator 
threshold α of target distance can be calculated by the 
related location between the target and the weapons launch 
envelope. 

The low level subordinate degree of each node can be 
determined based on μH(x): 

(9)                   L ( )=1- ( )Hx x   

Nodes TT\TM\MM\PO 

All of the target types, the target weapons state, local 
machine weapons state, pilot task instructions are 
qualitative factors, which means all of the evidence values 
(e.g. TTP, TMP, MMP, and POP) is qualitative collection of 
the exact values: 

TTP∈{ Bomber，Fighter，UCAV，…}， 
TMP∈{ Hang up，Offline，Guidance，…}， 
MMP∈{ Hang up，Offline，Guidance，…}， 
POP∈{ Silent，Interference，Attack，…}， 
When being fuzzed the above evidences can be 

assigned by the fuzzy subordinate degree assignment 
based on experts experience directly. 

According to the probabilistic reasoning method of 
Bayesian network and the sensor resource allocation model 
based on the discrete fuzzy Bayesian network, the steps of 
the sensor management algorithm is as follows: 

Step1：At time t, there are i kinds of sensor types of 
executable tasks, namely M1, M2,…Mi; Tj is the current 
target. The evidence nodes in the FBN can be calculated by 
the formula form (6) to (9). Noise may cause some of the 
evidences unavailable, thus we set the current evidence 
value equal to the value of the moment t-1; if the value of 
the moment t-1 is still not available, and then set the current 
evidence value equal to the value of the moment t-2, and so 
on. If the initial evidence value is not available, we manually 
set μL(x) =μH(x) =0.5. 

Step2：Based on the evidence node values from step1, 
the target threat posterior probability can be calculated by 
the formula (2) to (5): P(TTR=H/ETP,ETS ,ETA,ETT,ETM,EMM), 
Then make μH (TTRP) = P(TTR=H/ETP,ETS,ETA,ETT,ETM,EMM), 

The posterior probability of the sensor resource 
assignment level can be calculated by the formula  (2) to (5): 

P(SNS=H/EINF,EPO,ETTR,ETP,ETS,ETA,ETT,ETM,EMM) 
Step3：Use the task execution conditions to classify the 

target. The posterior probability of the sensor resource 
assignment level of Tj is Pj. When Pj >εi, do the mission Mi 
to Tj; When Pj≤εi, do not do the mission Mi to Tj; Theεi is 
the determine threshold to do the mission Mj, the value of Mj 
is the mission execute level. Generally, the biggerεi is, the 
more sensor resource requires. When multiple missions 
satisfy the execution conditions at the same time, do the 
mission with the biggest determine threshold. 

Step4: The algorithm will stop when the simulation 
meets the preset limit. Otherwise, do the moment t+1 
calculation. 
 
Simulation experiment and result analysis 

In this simulation, we assume that the aircraft is 
uniformly flying along a straight line, and an aerial attacker 
flies towards this aircraft. After a straight line uniformly flying 
for a period of time, the aerial attacker changes 50 degrees 
on roll angle and flies towards our aircraft, in order to attack. 
The attacking failed and the aerial attacker withdraws from 
the war zone. The entire simulation process lasts for 150 
seconds, which is divided into four stages specifically: 

Stage 1: from the simulation outset time to the 50th 
second, the aerial attacker approaches our aircraft with a 
uniform speed along a straight line; 

Stage 2: from the 50th second to the 75th second, the 
aerial attacker enters the war zone, makes a turn to fly to 
our aircraft, and implements track locks; 

Stage 3: from the 75th second to the 100th seconds, the 
aerial attacker gives up attacking; 

Stage 4: from the 100th second to the end of the 
simulation, the aerial attacker evacuates from the war zone 
with a uniform speed along a straight line. 

We suppose that our aircraft airborne radar supplies 
four kinds of patterns (i.e. M1, M2, M3 and M4) to process the 
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tracking of the aerial attacker. We establish the four kinds of 
patterns to advantage the simulation analysis, which have 
the model fixed sampling interval as 0.5, 1, 2 and 4 seconds 
respectively in advance. Based on this patterns condition, 
we carry on 100 Monte-Carlo simulations separately using 
two methods, which are IG and FBN, and apply to a Kalman 
filtering model. Denoting the process noise covariance 
matrix as Q1=Q2=1, the observation noise covariance 
matrices are R1=10, R2=5. By using FBN, the pilot gets the 
instruction of silent and attack separately in the stage of T2 
and T3. 

In the entire simulation procedure with the previous two 
methods, the sampling interval and the target location mean 
error (RMS) changes simultaneously, which are shown in 
Figure 2 and Figure 3. The comparison of the performance 
with the previous two methods is shown in Table 2, 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 IG sampling interval change 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 FBN sampling interval change 
 
Table 2 IG simulation performance parameter 

 T1 T2 T3 T4
Number of sampling times 49.50 32.02 26.03 48.33

Sampling intervals(S) 1.27 0.98 1.22 1.34
Position variance(M) 5.07 6.36 5.52 5.88

 
Table 3 FBN simulation performance parameter 

 T1 T2 T3 T4
Number of sampling times 51.19 1.29 60.17 47.12

Sampling intervals(S) 1.19 10.97 0.62 1.75
Position variance(M) 4.98 12.20 2.97 6.51

 
According to the simulation results, the target sampling 

intervals of both IG and FBN are only depend on the 
influence of filtering models, the performance of the two 
methods is close, because the targets have no 
manoeuvring and electronic countermeasure no 
simultaneously in the T1 stage in simulation; In stage T2, 

since the aerial attacker was turning its direction and 
implemented track locking to our aircraft at the same time, 
the threat of the aerial attacker to our aircraft dramatically 
increased. To meet the demand of silence of the FBN 
method, the sampling frequency of our aircraft should be 
decreased sharply. Compared to the IG method, the 
sampling frequency only dropped slightly because it is only 
influenced by the aerial attacker manoeuvre, which cannot 
fulfil the silence need under the attack threaten. Similarly, in 
stage T3, the FBN method can react according to the aerial 
attacker’s threat and the attack demand to increase the 
target sampling number; however the IG method only 
showed a small change. In stage T4, because the aerial 
attacker evacuated from the war zone and the threat to our 
aircraft becoming smaller, the FBN method reduced the 
sampling number to the target (fewer than that in stage T1). 
But the sampling number of IG method is still almost the 
same as that in stage T1, which cannot manifests the 
influence on the sampling number from the threat change of 
the aerial attacker. 
 
Conclusion 

According to kinds of influence factor of the sensor 
resource distribution in air battles, this paper proposed a 
method of air battle sensor resource management based on 
the fuzzy Bayesian networks (FBN). In this method, FBN is 
set up based on the influence factor causal relation in the 
sensor resource management. The increasing of target 
information, the aerial attacker threat and the pilot 
instructions are the evidence variables to be considered to 
carry on the probability inference and acquire the sensor 
resource assignment. An auto-adapting sampling intervals 
strategy is proposed in this paper. The simulation 
experiment compared with a traditional method, it had been 
proven that the method in this paper is able to react 
according to the aerial attacker threat and the pilot 
instruction, to manage the sensor resource in different 
stages of an air battle to meet the operational need. 
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