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Maximum Margin Clustering Using Extreme Learning Machine 
 
 

Abstract. Maximum margin clustering (MMC) is a newly proposed clustering method, which extends large margin computation of support vector 
machine (SVM) to unsupervised learning. But in nonlinear cases, time complexity is still high. Since extreme learning machine (ELM) has achieved 
similar generalization performance at much faster learning speed than traditional SVM and LS-SVM, we propose an extreme maximum margin 
clustering (EMMC) algorithm based on ELM. It can perform well in nonlinear cases. Moreover, the kernel parameters of EMMC need not be tuned by 
means of random feature mappings. Experimental results on several real-world data sets show that EMMC performs better than traditional MMC 
methods, especially in handling large scale data sets. 
 
Streszczenie. Opisano nową metodę klastrowania „maximum margin clusterung MMC” która rozszerza wielkość marginesu obliczeń numerycznych 
w systemie SVM z uczeniem bez nadzoru. Nowa metoda EMMC (extreme maximum margin clustering) zapewnia szybsze uczenie, szczególnie w 
warunkach nieliniowości. (Nowa metoda klastrowania – extreme margin clustering EMC w systemach extreme learning machine ELM) 
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Introduction 

Our goal is to design a fast maximum margin clustering 
algorithm used to improve the conventional high 
computational complexity of MMC. This approach is 
formulated as a sequence of efficient ELM training. Firstly, 
we reformulate the MMC problem based on ELM as a 
nonconvex optimization problem, and then perform 
alternating optimization directly on the constructed 
nonconvex problem instead of relaxing it. Our key 
modification is to replace SVM or SVR by ELM with the 
square loss, which can not only speed up the MMC 
algorithm, but discourage premature convergence. Thus, 
compared to existing approaches, the proposed EMMC in 
fact involves only a sequence of ELM training and the 
resultant implementation is fast and scales well. 
Experimental evaluations on several real-world data sets 
show that EMMC performs better than existing MMC 
methods.  

Organization of the paper is as follows. Section 2 
reviews prior research. Section 3 outlines the proposed 
method .Experimental results on several real-world data 
sets are provided in Section 4.Section 5 concludes the 
paper. 

 

Review of previous research 
Maximum margin clustering (MMC) is a newly proposed 

clustering method by means of supervised learning method. 
The key idea of MMC is to extend the maximum margin 
principle of support vector machines (SVM) to the 
unsupervised learning scenario. Hence the MMC technique 
often obtains more accurate results than conventional 
clustering methods. As the labels of samples are unknown, 
optimization over all the possible labeling leads to a hard, 
non-convex integer optimization problem. Consequently, 
different optimization techniques have been used to relax 
the original problem. Xu et al. [1] reformulate it as a 
semidefinite programming (SDP) problem, which could be 
efficiently solved using standard SDP solvers such as 
SeDuMi [2] and SDPT3[3]. Valizadegan and Jin [4] further 
proposed the generalized MMC (GMMC) algorithm which 
reduces the number of parameters in the SDP formulation 
form n2 to n, where n is the number of samples. 
Unfortunately, due to the fact that solving SDP is still 
computationally expensive, the worst-case time complexity 

of MMC and GMMC is 6.5O( )n and 4.5O( )n  respectively. 

Zhang et al. [5] utilized the alternative optimization 
techniques to solve the MMC problem. But how to make 

MMC applicable to a large scale data set is a very 
challenging and valuable research topic. 

Recently, ELM has been attracting considerable 
interests from more and more researchers [6-9]. The idea of 
ELM is actually the same to that of the random vector 
functional-link (RVFL) network [10, 11]where the hidden 
neurons are randomly selected and only the weights of the 
output layer need to be trained. Hence, ELM can be 
regarded as the single-hidden-layer RVFL network. The 
relatively fast convergence rate and small approximation 
error can be guaranteed if the number of hidden nodes is 
large enough, which is meaningful to large scale data sets. 
ELM provides a unified solution to different practical 
applications (e.g., regression, binary, and multiclass 
classifications), while different variants of LS-SVM and SVM 
are required for different types of applications, so the 
application of ELM is much easier. 

 

Approach 
In this section, we will firstly reformulate the MMC 

problem based on ELM with single output, and then solve 
the constructed nonconvex MMC problem by means of 
alternating optimization. Computationally, this allows the 
nonconvex problem to be formulated as a sequence of ELM 
training, so the proposed algorithm is fast and effective. 
Finally, we extend EMMC with single output to the multi-
outputs scenario. 

Since ELM can approximate any target continuous 
functions, the output of the ELM classifier h(x)β can be 
close to the class labels in the corresponding regions as 
possible. Thus the classification problem for the ELM with a 
single-output node can be formulated as [5]: 
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where 1( ) [ ( ),..., ( )]Lh x h x h x  is the output (row) vector 

of the hidden layer with respect to the input x. Thus the 
corresponding MMC problem is 
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where { 1}it   for two-class clustering with the class 

balance constraint 
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    or {1,..., }it m  for m-

classes clustering with the class balance constraint 

p ql N N l    , where m is the number of classes, 

, {1,..., }p q m ， pN and qN are the number of samples in 

the pth and qth class, respectively.                            
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A natural way to solve (2) is to use a simple iterative 
approach based on alternating optimization [5]. This is 
similar to the Iterative SVR proposed in [12]. First, we fix t 
and minimize (2) w.r.t.  , which is just a standard ELM 

training. Then, we fix   and minimize (2) w.r.t. t. 

Specifically, we discuss the following problem without the 
class balance constraint. 
(3)                         2

1
min ( ( ) )

n

i ii
h x t


              

     . . { 1}is t t    for two-class clustering or {1,..., }it m  for 
m-classes clustering. 1,...,i n . 

Proposition 1: For two-class clustering, the optimal 
strategy to determine it s in (3) is to assign all it s as -1 for 

those with ( ) 0ih x   , and assign it ’s as 1 for those with 

( ) 0ih x   ; For muticlass clustering, the optimal strategy to 

determine it s in (16) is to assign all it ’s as i for those with 

1 ( )ii h x i   , {1,..., }i m , where m is the number of 

classes. 
The proof of Proposition 1 is similar to that of the 

Iterative SVR proposed in [12], we don’t discuss it further. 
If ELM has multioutput nodes, an m-class classifier is 

corresponding to m output nodes. If the original class label 
is l, the expected output vector of the m output nodes is 

T [ 0 , . . . , 0 , 1 , 0 , . . . , 0 ]
l

i t . That is, the lth element of 

1{ ,..., }T
i i imt t t  is one, while the rest of the elements are 

set to zero. The classification problem for ELM with 
multioutput nodes can be formulated as [9]      
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where 1{ ,..., }T
i i imt t t  is the training error vector of the m 

output nodes with respect to the training sample xi . The 
corresponding MMC problem is 
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 . . ( ) , 1,...,T T
i i is t h x t i n    , 

1{ ,..., }T
i i imt t t  the wth element is one and the rest of 

the elements are set to zero, {1,..., }w m where m is the 

number of classes, p ql N N l    , , {1,..., }p q m , 

pN and qN  are the number of samples in the pth and qth 

class, respectively. 
Solving Eq. (5) by the alternative optimization method 

and enforcing the class balance constraint are similar to 
those of EMMC based on ELM with the single output. The 
difference is that the output function of ELM with 
multioutputs is the function vector, Thus we first compute 

( )ih x  , and then assign the labels according to the 

distance between ( )ih x   and it . Finally, we sort the 

max ( )(1 )i if x i m   and reassign the labels to enforce 

the class balance constraint. 
For the sake of clarity, the complete algorithm is 

summarized： 
Step 1: Initialize the labels t  
Step2: For two-class clustering, fix t, where { 1}it    and 

perform training of ELM with single output. For muticlass 
clustering, fix t, where {1,..., }it m  and perform training of 

ELM with single output, or fix t , where 1{ ,..., }T
i i imt t t  and 

perform training of ELM with multi-outputs. 

Step3：Assign the labels as described above. 
Step4: Check the class balance constraint, if it is 

violated, sort the ( )ih x  ’s and reassign the labels as 

described above. 
Step5: Repeat steps 2–4 until convergence. 
  Hence, EMMC with single output has comparable 

performance to that based on multioutputs, which will be 
validated in Section 4. 

 

Results 
In this section, we will validate the performance of the 

proposed EMMC algorithm on a number of real-world data 
sets. We use seven data sets from the UCI machine 
learning repository. The same experimental setup was set 
as in [5].  

Firstly, we study the effect of initialization on EMMC with 
single output. The two initialization schemes are included in 
the experiment:1)random; 2)standard k-means clustering 
(KM). As can be seen from Table 1, the clustering error of 
the random scheme is close to 50% error, EMMC with 
random initialization has poor performance with the poor 
initialization.  

As can be seen from Table 2 and 3, the clustering 
accuracy of EMMC with single output is slightly lower than 
that of EMMC with multi-outputs, Thus, for simplicity, we 
use the EMMC algorithm with single output in both two-
class and multiclass clustering, and then compare it with the 
other MMC algorithms. 

 

Table 1. Average Performance on the 45 Clustering Tasks Under 
Different Initialization Schemes 
Clustering 
Scheme 

Clustering error(%) CPU time(Second) 

Random only 48.21 0.001 
Random + 
EMMC 

26.37 11.06 

KM only 3.49 0.025 
KM + EMMC 1.84 1.69 
 

Table2. Clustering Results Comparisons between EMMC with 
single output and multiouputs on LetterABCD data set. 

The number of 
hidden nodes L 

EMMC 
with single output 

EMMC 
with multioutpus 

Acc(%) Time(s) Acc(%) Time(s) 
100 40.17 3.36 40.86 3.79 
150 56.35 4.70 56.25 5.58 
200 60.74 6.27 61.44 7.36 
300 68.25 13.32 68.73 14.86 
500 69.67 19.68 70.85 22.52 
1000 71.53 103.76 71.72 109.69 
 

Table 3. Clustering Results Comparisons between EMMC with 
single output and multiouputs on USPS data set. 

The number of 
hidden nodes L 

EMMC 
with single output 

EMMC 
with multioutpus 

Acc(%) Time(s) Acc(%) Time(s) 
200 42.65 30.51 41.31 32.62 
400 75.29 87.90 75.54 92.11 
600 87.38 190.56 87.74 196.885 
800 92.26 342.21 92.45 350.875 
1000 94.47 536.61 94.89 547.045 
1200 94.75 742.05 95.03 754.705 
1500 95.11 1173.06 95.57 1188.76 

 

We further perform EMMC with different numbers of 
hidden nodes on several data sets, whose size is bigger 
than 1000. Fig. 1 shows the clustering accuracy of EMMC 
with various values for L. It can be seen from Fig. 1 

In Fig.2 the CPU time of EMMC grows nonlinearly with 
the increase of the variable L. From Fig.1 and Fig.2, it is not 
difficult to find out that letting L equal 300 is suitable for 
letterA-B, satelliteC1-C2, svmguide1-a and letterABCD. For 
ringnorm and USPS, we let L equal 300 and 1000, 
respectively. 
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Fig.1. Clustering accuracy of EMMC with various values for L. (a) 
several data sets. (b) USPS. 
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Fig.2. CPU time (in seconds) of EMMC as a function of the number 
of hidden nodes. (a) several data sets. (b) USPS. 

Overall, EMMC can handle not only two-class but 
multiclass problems, and has good clustering performance 
at the fastest speed. 

 
Conclusion 

In this paper, we propose an efficient approach for 
solving MMC via ELM. While traditional MMC algorithms 
are formulated as SDPs or based on the SVM model, our 
approach is formulated as a sequence of efficient ELM 
training. Meanwhile, the symmetric square loss function in 
ELM discourages premature convergence by penalizing 
overconfident predictions. It is also noted that our method 
can handle imbalanced data effectively by enforcing the 
class balance constraint. Empirically, the clustering 
performance of EMMC is comparable to that of the other 
MMC algorithms. Moreover, it is much faster and can 
handle much larger data sets. In the future, we will study 
how to extend our clustering method to the semi- 
supervised learning setting. In addition, in order to enhance 
the performance of EMMC further, we will combine kernel 
learning methods with our methods. 
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