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Abstract. Rational interpolation gives much better approximations than polynomial interpolation, but it is difficult to avoid poles, unattainable points 
and control the occurrence of poles. In [1], a family of barycentric rational interpolants that have no poles and high approximation orders is given 
based on composite algorithm for the barycentric rational interpolation. In this paper, we propose a new composite barycentric rational interpolants 
with high-accuracy. The error estimation is discussed and a numerical example is given to show the effectiveness of our new method. 
 
treszczenie. W artykule przedstawiono nowy, złożony i wymierny interpolator barycentryczny o wysokiej dokładności. W klasycznej formie 
interpolacja wymierna ma znacznie lepsze własności aproksymacji niż interpolacji wielomianowa, lecz trudno w niej jest uniknąć biegunów, punktów 
nieosiągalnych i sterować ich występowaniem. (Złożona i wymierna interpolacja barycentryczna o wysokiej dokładności). 
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. 
Introduction 

The problem of interpolation is that according to the 
given values of discrete points to construct a simple 
continuously function such that it has the same function 
values at all the given points exactly. In this digitization age, 
it is not difficult to find examples of applications where this 
problem occurs. The relatively easiest and in many 
applications often most desired approach to solve the 
problem is interpolation, where an approximating function at 
the given measurement points. Polynomial interpolants are 
used in the solutions of equations and in the approximation 
of functions, of integral and differential equations, etc. 
Polynomial interpolants are used as the basic means of 
approximation. It is well known that the classical rational 
interpolation sometimes gives better approximations than 
polynomial interpolation[3]. But it is difficult to avoid and 
control poles and there are sometimes unattainable points 
and infinite inverse differences for the Thiele-type continued 
fraction interpolation[4]. Barycentric rational interpolation 
was presented by W. Werner[2], it possesses various 
advantages in comparison with classical continued fraction 
rational interpolants, such as small amount of calculation，
good numerical stability, no poles and no unattainable 
points [2,5]. 

In [1], the composite barycentric rational interpolations 
have been given by Floater and Hormann. An important 
property of interpolants in [1] is that interpolants are free of 
poles. Furthermore, interpolants in [1] possess high-
accuracy when the interpolants are smooth enough. 
However, this method has some deficiencies. For example, 
composite barycentric rational interpolation would 
degenerate into polynomial interpolation on the interval in 
extreme cases. And, the interpolant approximation accuracy 
is not very well obviously for large sequences of equidistant 
points. In this paper, we will adopt local barycentric rational 
interpolations to composite interpolants with high-accuracy. 
The interpolants obtained by new method possess good 
numerical stability, no poles and no unattainable points. At 
last, numerical examples are given to show the 
effectiveness of our new method. 

 
Univariate Barycentric Rational Interpolation 
   Let the rational function ( )r x  ,n nR , ,n nR  is a set of all 

rational functions with the degrees of denominator and  
numerator at most n respectively . 

Lemma [6] Let   , , 0i ix f i n  , be 1n   pairs of real 

numbers with i jx x for i j  , and let ( )i if x f  , and 

 , 0i i n    be 1n   pairs of real numbers. Then 

a) If 0k  , the rational function ( )r x  satisfy  
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b) Conversely, every rational interpolantion ( )r x ,n nR  

may be written as in (1) for some k . 

According to lemma, when all weights of the 
interpolation nodes are not equal to zero, the barycentric 
rational interpolation has no unattainable points. From [5], 
the necessary condition of barycentric rational interpolation 
which has no poles is given as follows:  

   1= , (0 1).j jsign sign j n       

It is the key issue how to choose weights of barycentric 
rational interpolation to obtain a better approximation. 
Barycentric rational interpolants possess various 
advantages, such as, small amount of calculation[7] ，good 
numerical stability, no poles and no unattainable points, and 
it is better than the polynomial interpolation interpolation 
when the interpolation points are equidistance[6] . In 1988, 

using the simple weights ( 1) j
ju    (0 )j n   , Berrut 

gave the barycentric rational interpolant as follows 
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This barycentric rational interpolation has no poles in the 
interpolation interval [8]. 
 
Composite Barycentric Rational Interpolation  

Let 1n   distinct interpolation points (0 )ix i n  , 

together with corresponding numbers ( )if x be given, 

choose any integer (0 )d d n  ,and for each 
i j i d    let ( )ip x  denote the unique polynomial of the 

degree at most d that interpolates ( )f x at the 1d  points 
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1, , , .i i i dx x x    Composite barycentric rational interpolation 

be given by Floater and Hormann in [1] as follows.  
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for fixed  1d   the interpolant has approximation order 
1( )dO h  as 0h  , where 1

0 1
: max ( )i i

i n
h x x  
  ,as long as 

2( ) df x C   [1]. 

However, this method has some deficiencies, for 

example, if you take d n , the interpolant obtained by 
formula (3) will degenerate into polynomial interpolation on 
the interval. The interpolation approximation precision is not 
well obviously, especially for large sequences of equidistant 
points. Meanwhile, thanks to the barycentric rational 
interpolations which possess high-accuracy, rational 
interpolations with high-accuracy can be composited by 
barycentric rational interpolations. 

 
Composite Barycentric Rational Interpolation With 
High-accuracy 

Let 1n  distinct interpolation points (0 )ix i n   

together with corresponding numbers ( )if x be given. 

Choose any integer (0 )d d n  , and for each 

i j i d   , Let ( )ir x denote the barycentric rational 

interpolations with ( 1) (0 )j
ju j n     that interpolate 

( )f x at the 1d   points 1, , ,i i i dx x x    , then 
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Obviously, using formula (5), the drawback of formula 
(3) can be overcome effectively. When d n  or 0d  , the 
interpolant can still be barycentric rational interpolations on 
the whole interpolation interval. We can prove that the 
interpolants obtained by formula (5) satisfy interpolation 
conditions, have no poles. In the following, we will derive 
some properties of the interpolant and give some numerical 
examples in order to illustrate the new method with 
effectiveness.  
Theorem 1  ( )R x  obtained by formula (5) satisfy 

interpolation condition, ( ) ( ), 0R x f x n     . 

Proof   Let  , (0 )J i I d i n          

 0,1, ,I n d    , and x x . According to lemma, 

we can obtain ( ) ( ) ( )ir x f x i J   . 
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Theorem 2 For all (0 )d d n  , the rational interpolation 

( )R x  obtained by formula (5) has no poles in its interval. 

Proof   It follows from (5), we obtain[9]  
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Thus, Theorem 2 was established. 
 
Approximation Error 

Theorem 3. Suppose  2( ) ,f x c a b , the rational 

interpolant ( )R x  is obtained by formula (5), then   
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Proof   If 0d  , we can obtain the approximation error 

of the barycentric rational interpolation ( )ir x  with 

( 1) (0 )j
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 The error analysis indicates that approximation error of 
the new method in this paper can be smaller than [1]. 

 
Numerical Examples 

Example 1. We apply the method to   2xf x e  firstly, 

for ( 1,1)x  , the points ix  are sampled uniformly by 

1 2 / , (0 )ix i n i n     . Interpolants can be obtained by 

formula (2), formula (3) and formula (5) (take 5d  ). The 
maximum absolute error is displayed as follows. 

 
Table 1.  Error Comparison 

 N=100 N=200 N=300 
Formula (2) 1.2029e-2 4.1180e-3 9.4225e-4 
Formula (3)  2.3001e-4 2.1777e-3 4.3414e-4 
Formula (5) 8.6228e-5 2.2153e-5     3.6450e-6 

 

Example 2. We apply the method to   sin(2 )xf x e x  

for ( 1,1)x  , 4d  , the points ix  are sampled uniformly 

by 1 2 /100, (0 100).ix i i      

The maximum absolute error at those points are 
32.7418 10  , 22.6738 10  and 11.9757 10 , obtained by 

new method ,formula (2) and formula (3), respectively. 
The figure of the function interpolated and interpolant by 

using MATLAB7.1 . 
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Fig.1. The interpolant with  the new method. 

Conclusion 
In this paper, we have adopted local barycentric rational  

interpolations to composite interpolants with high-accuracy. 
The interpolants obtained by new method possess good 
numerical stability, no poles and no unattainable points. It 
can improve approximation accuracy forward by adopting 
local polynomial interpolation into barycentric rational 
interpolation, especially for large sequences of equidistant 
points. 
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