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Abstract. Conventional linear instantaneous mixing model becomes unsuitable if propagation time delays are taken into account. A blind separation 
algorithm based on second-order Taylor approximation for delayed sources (SOTADS) is presented, under the constraint that time delays are small 
in comparison with the coherence time of each source. Simulation results validate that the proposed algorithm performs superior than related 
approaches even when the constraint is violated. 
 
Streszczenie. Zaprezentowano algorytm ślepej separacji bazujący na aproksymacji Taylora drugiego rzędu dla źródeł z opóźnieniem SOTADS. 
Założono że czas opóźnienia jest mały w porównaniu z czasem koherencji obu źródeł. (Ślepa separacja sygnałów bazująca na aproksymacji 
Taylora drugiego rzędu) 
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Introduction 

Blind source separation (BSS) denotes extracting latent 
sources only from several observed mixtures, without 
available knowledge about the source signals and the 
mixing process. According to the assumptions made about 
the mixing model, BSS traditionally can be categorized as: 
instantaneous and convolutive. The instantaneous mixing 
case has been achieved with good results in a large 
number of ways [1-2]. As a matter of fact, the hypothesis 
that all the sources reach the sensors simultaneously can 
hardly be satisfied in real-world applications. For example, 
in acoustics the propogation of the audio signals through 
the medium is not instantaneous (like signals through air or 
water), or in electrical engineering signals from multiple 
antennas are received asynchronously, or in biomedicine 
myoelectric signals recorded in multiple locations over the 
skin surface are delayed versions due to the transmission of 
the intracellular potentials along the muscle fibers. Taking 
the signal propagation delay into account, mixtures are 
approximated by linear combinations of time-delayed 
source signals, which is called anechoic mixing. And it can 
be deemed as a particular case of the convolutive mixing 
model [3], where each mixture is a differently filtered 
combination of source signals. Obviously, approaches for 
the convolutive mixing are over-parameterized for the 
anechoic mixing. 

So far only several literatures [4-11] have addressed the 
blind separation of delayed sources in anechoic 
environment.  Some algorithms [6-8] are derived by 
applying stochastic time-frequency analysis. Other much 
more popular ways by using truncated Taylor series of each 
delayed source has been successfully explored [8-11]. 
When the propagation delays are sufficiently small in 
comparison with the coherence time of each source, it 
shows that such mixtures can be modelized by linear 
instantaneous combinations of different temporal 
derivatives of sources [12]. These derivatives act as new 
dependent sources, and separation can be achieved by 
using second-order statistical analysis. However, most of 
existing research concentrate on first-order Taylor 
approximation, which have a positive effect on the 
performance for relatively small delays, such as the recent 
Rtau-Delay algorithm [8]. To handle relatively larger delays, 
it will be helpful to expanding the Taylor series to higher 
orders. 

Therefore in this paper, we have presented a blind 
separation algorithm based on second-order Taylor 
approximation for delayed sources (SOTADS). We propose 

in a first step to whiten observations as the classical SOBI 
algorithm [13] does, and in a second step to recover original 
source signals by joint diagonalization [13-14] of the 
covariance matrix of the whitened observations. What 
should be mentioned is that we also utilize the symmetry of 
the covariance matrix to reduce the approximation error and 
improve the estimation accuracy. It can be said that 
SOTADS is the extension of SOBI. Simulation results 
validates the outstanding performance of our proposed 
algorithm over both Rtau-Delay and SOBI, especially when 
confronted with relatively larger propagation delays.  

The rest of this paper is organized as follows. In section 
II, the signal model is briefly introduced. Section III presents 
the proposed SOTADS algorithm. Simulation results and 
discussion are provided in section VI. At the end of the 
paper, a concise conclusion is given. 

 
Signal Model 

Let the M observations 1( ) [ ( ),..., ( ),..., ( )]T
j Mt x t x t x tx  be 

linear combinations of N  delayed source signals 

1( ) [ ( ),..., ( ),..., ( )]T
i Nt s t s t s ts , with unknown time delays jit  in 

addition to unknown attenuation coefficients jia : 

(1)                          
1

( ) ( ) ( )
N

j ji i ji j
i

x t a s t t p t


     

where 1( ) ( ),..., ( ),..., ( )
T

j Mt p t p t p t   p  is the Gaussian noise 

vector. Note that ( )ts  are assumed to be zero-mean, unit-
variance, mutually uncorrelated, and uncorrelated with ( )tp . 

As it is shown in [12] that if all delays are considered 
sufficiently small for the inequality below to be verified 

(2)                               
max

1

2
ji dt T

f
    

where maxf  is the maximum frequency of the sources, then 

observations can be approximated by first-order Taylor 
series expansion: 

(3)                       
1 1

( ) ( ) ( ) ( )
N N

j ji i ji ji i j
i i

x t a s t a t s t p t
 

      

where ( )is t denotes the first derivatives of ( )is t . Moreover, 

the tolerable delays can be enlarged to  
(4)                                       3ji dt T   

if the second-order Taylor series expansion is introduced: 

(5)              
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1 1 1
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N N N
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t
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where ( )is t  denotes the first and second derivatives of ( )is t . 

Eq.(5) can be expressed in matrix form as: 
(6)                                    ( ) ( ) ( )t t t A x s p  
with the extended source vector 

 1 1 1( ) ( ),..., ( ), ( ),..., ( ), ( ),..., ( )
T

N N Nt s t s t s t s t s t s t    s  and the extended 

mixing matrix 
2 2

11 1 11 11 1 1 11 11 1 1

2 2
1 1 1 1 1

N N N N N

M MN M M MN MN M M MN MN

a a a t a t a t a t

a a a t a t a t a t

  
   
   

A

  
         

  
. 

Obviously, Eq.(5) is the linear instantaneous approximation 
of Eq.(1). To ensure that A  has full rank,  it is necessary to 
assume the number of observations is at least three times 
that of the sources, i.e., 3M N . This limitation can be 
overcomed by using antenna array to replace traditional 
antennae in practical applications. 

 
The proposed SOTADS algorithm 

Paoulis [15] has pointed out the following properties: (i) 
( )(1 )is t i N  are mutually uncorrelated, so are ( )is t ; (ii) ( )is t  

and ( )is t  are only uncorrelated for 0  , and so are ( )is t  

and ( )is t ; (iii) ( )is t  and ( )is t  are even not uncorrelated for 

0  . Hence in our signal model in Eq.(6), besides the 
original sources, these first-order and second-order 
derivatives act as new dependent sources. Referring to the 
classical SOBI algorithm which is designed for temporally 
correlated sources, the proposed SOTADS algorithm to 
separate delayed sources is also composed of two steps: 
whitening and joint diagonalization. 
 
Whitening for SOTADS 

The 3 3N N  covariance matrix of the extended source is  
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From above analysis it is easy to get 
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and for 0  , 

(9)                     
(0) 0 (0)
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(0) 0 (0)

R R

R R

R R

 
   
  



 

 

s ss

s s

ss s

 

Here we approximately regard (0)Rs  to be a diagonal matrix, 

that is to say, the effect of (0)R ss  and (0)Rss  is neglected. 

Then the whitening method described in the SOBI algorithm 
[13] can be adopted, and it is briefly summarized as follows: 
 
Step 1: Estimate the covariance ˆ (0)xR  from data samples. 

Denote 1 3,..., N   to be the 3N  largest eigenvalues in 

descending order and 1 3,..., Nh h  to be their corresponding 

eigenvectors. 

Step 2: Estimate the noise variance 2ˆ p  by taking the 

average of the 3M N  smallest eigenvalues of ˆ (0)xR . 

Step 3:  Estimate the whitening matrix as 
1 1

2 22 2
1 1 3 3ˆ ˆ( ) ,...,( )

T

p N p Nh h   
  

   
 

W  

Step 4: Obtain the whitened observations ( ) ( )t t Wy x . 
 
Joint Diagonalization for SOTADS 

Consider the properties shown in [16]: 

(10)              
     ( )( ) ( ) ( ) ( 1) ( )q r

q r r q r
ss s

R E s t s t R t        

where ( ) ( )ks t  denotes the k -order derivative of ( )s t . The 
Eq.(7) can be converted into 

(11)               
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where   ( )kR s  denotes the k -order derivative of ( )R s . 

Obviously, the covariance matrix ( )R s  is far from 

diagonal for 0  . The joint diagonalization of ( )R y  for 

multiple nonzero delays cannot be applied directly.  By 
exploiting the symmetry of ( )R s , we find that 
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Therefore, it now seems much more reasonable for us to 
regard approximately the right part of Eq.(12) as a diagonal 
matrix, just like what we do in the previous whitenting 
process. And consequently, 
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It is observed that the size of the off-diagonal entries 
compared to that of the main diagonal entries depends on 
the bandwidth and frequency characteristic of each source 
[10]. 

A generalization of the Jacobi technique for the 
diagonalization of a single Hermitian matrix has been 
developed and implemented [13-14]. This extended 
technique consists of minimizing the so called “joint 
diagonality” criterion, to be exactly, the off-diagonal entries, 
as a product of successive Givens rotations. We will not 
explain its mechanism in detail in this paper. 

After applying the extended Jacobi technique on 
( ) ( )TR R x x  at multiple nonzero delays, i.e., 

 ( ) ( ) 1,...,T
k kR R k K  x x , a unitary matrix Q  is obtained as 

the joint diagonalizer. Thus the estimated sources can be 
calculated as ˆ( ) ( )Tt tQ Ws x , the estimated mixing matrix 

can be calculated as #ˆ A W Q . 
 
Simulation Results and Discussion 

Band-limited Gaussian noise signals with different but 
overlapping spectra were used as the original sources. The 
delays were generated randomly between 0 and a defined 
maximum value, that is, max. delay. Related parameters 
were: N=2, M=8, K=4, fmax=350Hz, Td=0.64ms. Three 
algorithms were compared, i.e., SOBI based on zero-order 
Taylor expansion, Rtan-Delay based on first-order Taylor 
expansion and the proposed SOTADS based on second-
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order Taylor expansion. Their performance was measured 
by the cross-correlation index (CCI) as 

(14)                              ˆ
1

1
max

j j

N

s s
i

CCI R
N 

        

where  ˆmax
j js sR  is the maximum value of the normalized 

and absolute cross-correlation between the original source 
sequence js  and the estimated source sequence ˆ js . 

A simulation example of the original signals and their 
corresponding estimations obtained by the proposed 
SOTADS algorithm is presented in Fig.1.  
 

 
Fig.1. A simulation example of the original source signals (the solid 
line) and the corresponding estimations (the dashed line) obtained 
by the proposed SOTADS algorithm. (a) Mixture was generated 
with maximum delay of 1Td, the CCI between the two sources and 
their estimations are 0.9984 and 0.9826 for top and bottom 
respectively. (b) Mixture was generated with maximum delay of 5Td, 
the CCI between the two sources and their estimations are 0.8817 
and 0.8081 for top and bottom respectively. 
 

 
Fig.2. The average simulation results for SNR= ∞dB over 500 
independent runs. The horizontal axis denotes the multiple of Td, 
linear scale from 0 to 1 and log scale from 1 to 20 for the 
convenience of observation. 
 

 
Fig.3. The average simulation results for SNR=10dB over 500 
independent runs. The horizontal axis denotes the multiple of Td, 
linear scale from 0 to 1 and log scale from 1 to 20 for the 
convenience of observation. 
 

Fig.2 shows the results for noise-free environment, i.e., 
SNR=∞dB. For small delays (≤1Td), the difference among 
three algorithms is unconspicuous. To be exactly, SOTADS 
performs slightly worse than Rtau-Delay for 0 ≤ max. delay 
≤ 1Td. The reason for it may be due to the approximation 
error introduced by the diagonalization assumption in Eq.(9) 

and Eq.(12).  As the delays increase, their performance 
inevitably deteriorates, especially for SOBI. It is easy to find 
that the proposed SOTADS significantly outperforms than 
the other ones. For example when the max. delay reaches 
5Td, the CCI of SOTADS remains 0.9, while Rtan-Delay 
decreases to 0.77 and SOBI slides to 0.67 dramatically. 
From another point of view, to maintain the CCI above 0.9, 
the tolerable max. delay for SOBI is only 1Td, while 3Td for 
Rtau-Delay and 5Td for SOTADS respectively. 

The results for SNR=10dB is presented in Fig.3. The 
same trend also supports the above analysis. Note that the 
performance of SOTADS is almost the same as that of 
Rtau-Delay for 0 ≤ max. delay ≤ 2Td. Here the 
approximation error of the diagonalization assumption 
conteracts the negative impact imposed by the noise to 
some extent. Moreover, the robustness to noise of the 
proposed SOTADS becomes outstanding for larger delays 
(≥3Td). 

 

 
Fig.4. The effects of maximum delay and SNR on CCI performance 
for the proposed SOTADS algorithm over 500 independent runs. 
 

 
Fig.5. The effects of the non-zero delay number and SNR on CCI 
performance for the proposed SOTADS algorithm over 500 
independent runs. 

 
Fig.4 shows the effects of maximum delay for the 

proposed SOTADS algorithm under different SNRs. As it is 
known, the CCI performance improves as the SNR 
increases. Especially when SNR≥ 10dB, three of them 
become satisfying and keep stable. And to our expect, the 
1Td max. delay case behaves the best, while the 5Td max. 
delay case behaves the worest. As for lower SNR (≤5dB), 
it is interesting that the larger delay can conteract the more 
negative effect of noise. 

Fig.5 shows the effects of the non-zero delay number 
participated in the joint diagonalization for the proposed 
SOTADS algorithm under different SNRs. Similar with Fig.4, 
SNR=10dB is also a devide. And K=12 seems to be a better 
choice for 0dB≤SNR≤10dB. Their performance become 
so poor for SNR≤0dB that it is meaningless to make a 
comparision. 
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Conclusion 
To extract original source signals from mixtures with 

propagation delays, the SOTADS algorithm is proposed to 
handle relatively larger time delays, which makes sense in  
wide real-world applications. It simplifies this anechoic 
mixing problem into traditional linear instantaneous BSS by 
applying second-order Taylor series expansion. The 
SOTADS algorithm is based on principles from the SOBI 
algorithm through twice diagonalization approximations but 
with significant improved performance. Moreover, it 
enhances the estimation accuracy by utilizing the symmetry 
of the covariance matrix. How to eliminate the 
approximation error becomes the next research goal. 

 
Acknowledgment 
     The author would like to thank Doctor Ning Jiang for his 
valuable advice and suggestion during the preparation of 
the manuscript.  
     This work was supported by the National Natural 
Science Foundation of China under Grant 61172061 and 
the Natural Science Foundation of JiangSu Province in 
China under Grant BK2011117. 
 
 

REFERENCES 
[1]  A. Hyvarinen, J. Karhunen and E. Oja, Independent component 

analysis, New York: John Wiley & Sons, 2001. 
[2]  V. Zarzoso and P. Comon, Robust independent component 

analysis by iterative maximization of the kurtosis contrast with 
algebraic optimal step size, IEEE Trans. Neural Network, vol.21, 
no.2, pp.248-261, 2010. 

[3]  F. Nesta, P. Svaizer and M. Omologo, Convolutive BSS of 
short mixtures by ICA recursively regularized across 
frequencies, IEEE Trans. Audio, Speech and Lauguage 
Processing, vol.19, no.3, pp.624-639, 2011. 

[4]  K. Torkkola, Blind separation of delayed and convolved sources, 
Unsupervised Adaptive Filtering, New York: Wiley, 2000, vol.1, 
pp.321-375. 

[5]   A. Yeredor, Blind source separation with pure delay mixtures, 
In International Workshop on independent component analysis 
and blind source separation Conference, San Diego,CA, 2001. 

[6]  L. Omlor and M. S. Giese, Blind source separation for over-
determined delayed mixtures’, in Advances in Neural 
Information Processing Systems, MIT Press, Cambridge, MA, 
pp.1049-1056, 2007b. 

[7]  D. Nion, B. Vandewoestyne, S. Vanaverbeke, et.al, A time-
frequency technique for blind separation and localization of 
pure delayed sources, in Proceedings of the 9th international 
conference on latent variable analysis and signal separation, 
pp.546-554, 2010. 

[8]  N. Jiang and D. Farina, Covariance and time-scale methods for 
blind separation of delayed sources, IEEE Trans. On 
Biomedical Engineering, vol.58, no.3, pp.550-556, 2011. 

[9]  G. Chabriel and J. Barrere, Blind indentification of slightly 
delayed mixtures’, in Proceedings of the Tenth IEEE Workshop 
on Statistical Signal and Array Processing, pp. 319–323, 2000. 

[10] J. Ashtar, et al, A novel approach to blind separation of 
delayed sources in linear mixture, in 7th Semester Signal 
Processing, Aalborg, Denmark, pp.1-8, 2004. 

[11]  G. Chabriel and J. Barrere, An instantaneous formulation of 
mixtures for blind separation of propagating waves, IEEE 
Trans. Signal Processing, vol.54, no.1, pp.49-58, 2006. 

[12]  J. Barrere and G. Chabriel: ‘A compact sensor array for blind 
separation of sources’, IEEE Trans. On Circuits and Systems-I: 
Fundamental Theory and Applications, 2002, vol.49, no.5, 
pp.565-574. 

[13]  A. Belouchrani, et al, : ‘A blind source separation technique 
using second-order statistics’, IEEE Trans. Signal Processing, 
1997, vol.45, no.2, pp.434-444. 

[14]  G. H. Golub and C. F. V. Loan, Matrix Computations, 
Baltimore, MD: Johns Hopkins Univ. Press, 1989. 

[15]  A. Papoulis, Probability, Random Variables, and Stochastic 
Process, 2nd ed, New York: McGraw-Hill, 1984. 

[16]  K. S. Shanmugan and A. M. Breipohl, Random Signals, New 
York: Wiley, 1988. 

 
 
 
Authors: Dr. Hui Li, Wireless Communication Faculty, Institute of 
Communications Engineering, E-mail: leehoo86@163.com; Prof. 
Yue-hong Shen, Wireless Communication Faculty, Institute of 
Communications Engineering, E-mail: chunfeng22259@126.com; 
Dr. Jian-gong Wang, Wireless Communication Faculty, Institute of 
Communications Engineering, E-mail: hw12xian@hotmail.com.

 
 


