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non-linear differential equation system in pharmacokinetics 

 
 

Abstract. The paper deals with Euler's- and Taylor's expansion methods for next numerical solution in Matlab environment. There are many 
applications in pharmacokinetic described and modelled by linear or non-linear differential equation (DE) systems. These non-linarities can be 
considered in drug absorption, distribution, metabolism and excretion, and the pharmacokinetics of drug action. A fictitious exciting functions method 
makes possible numerical solution of this DE system with non-stationary matrices. The solutions of simple example are presented as well.  
 
Streszczenie.  Praca pokazuje zastosowanie rozwinięcia Eulera i Taylora w rozwiązaniu równań różniczkowych zwyczajnych w środowisku 
Matlaba. W szczególności rozważono równania różniczkowe liniowe i nieliniowe zapisane w formie równań stanu. Symulacje numeryczne 
potwierdzające prawidłowość proponowanej metody dotyczyły praktycznego przykłady równań farmakokinetycznych występujących przy badaniach 
leku stosowanego w angioplastyce wieńcowej (Rozwinięcie Eulera i Taylora w rozwiązaniu nieliniowych równań w farmakokinetyce). 
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Introduction 

Pharmacokinetic modelling uses systems of ordinary 
differential equations (ODE) derived from biological 
considerations along with statistical models to model the 
time course for example of drug in the body. From these 
sources we can obtain simply one-compartment models or 
multi-compartments model. 

There are many applications in pharmacokinetic 
described and modelled by linear or non-linear ODE 
systems. Evidence of non-linarities in pharmacokinetics 
goes back to the early 1930's with the origination of the 
concept that ethyl alcohol is eliminated at a fixed rate 
independent of its concentration in the body, [1]. 
Pharmacokinetics is the study of the course of absorption, 
distribution, metabolism, and elimination of some substance 
in a living body and it is especially important in the 
development of drugs. Sources of non-linearities are for 
example absorption and elimination parameters, systemic 
clearance, enzymatic metabolic activity, plasma binding, 
renal clearance, and cerebrospinal fluid drug concentration, 
[2], [3]. 
 
Solution of non-linear ODEs 

A fictitious exciting functions method makes possible 
numerical solution of this DE system with non-stationary 
matrices. The paper deals with Euler's- and Taylor's 
expansion methods for next numerical solution in Matlab.  

Let's have system of DEs  
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It can be also presented in matrix state-space form 
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where A, B are the system- and transition matrices; x , u

are state-variables- and  exciting vectors. 
If a11 and a12 elements of A matrix are non-stationary and 

b12, b21, b22 and u2 = 0 then  
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where Af, Bf  are the modified (fictitious) system- and 
transition matrices; fu is fictitious exciting vector, and a11x1, 

a12x2 are fictitious exciting functions. 
Let's consider Euler's- and Taylor's expansion methods 

for numerical solution by [4]. We obtain: 

a) Euler explicit method yields 
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where h is integration step and E is unity matrix. 

b) Euler implicit method yields 
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where F = (E - hAf )
-1 is fundamental matrix of the system. 

c) Taylor expansion yields 
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So, choosing appropriated number of series member n is 
(6) fnnn uxx GF 1  

The discrete equations carried-out by Euler explicit-, 
implicit- and Taylor expansion methods are easily solvable 
by numerical computing because their modified (fictitious) 
matrices are stationary ones. The solutions of simple 
examples are presented in [5]. 

 
Pharmacokinetics 

Pharmacokinetics is the study of drug disposition in the 
body and focuses on the changes in drug plasma 
concentration. For any given drug and dose, the plasma 
concentration of the drug will rise and fall according to the 
rates of three processes: absorption, distribution, and 
elimination.  

Absorption of a drug refers to the movement of drug into 
the bloodstream, with the rate dependent on the physical 
characteristics of the drug and its formulation.  

Distribution of a drug refers to the process of a drug 
leaving the bloodstream and going into the organs and 
tissues.  

Elimination of a drug from the blood relies on two 
processes: biotransformation (metabolism) of a drug to one 
or more metabolites, primarily in the liver; and the excretion 
of the parent drug or its metabolites, primarily by the 
kidneys.  

The relationship between these processes is shown in 
Fig.1, [6]. In the case of intravenous administration is 
scheme more simply, it is without absorption from the blood.  
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Fig.1. The absorption, distribution, biotransformation (metabolism), and excretion of a typical drug after its oral administration [6] 
 
 

Linear and non-linear ODEs in pharmacokinetics 
As is mentioned above the distribution of drugs in 

organism is doing across different biological membranes. 
The major and usually the only process that controls the 
passage of drugs across membranes is passive diffusion. It 
comes to this that the directed movement of a chemical 
through a barrier from a higher to lower concentration (no 
energy is necessary). Passive diffusion reflects the natural 
tendency for chemical concentrations to move towards 
equilibrium and stability. That mathematical modelling is 
going out from first Fick’s low [6].   

Traditional pharmacokinetic models are based on the 
assumption of a linear relationship between the dose of a 
drug and its concentration. The body is divided into 
physiological compartments (different biological areas) 
bounded to membranes, and a drug’s journey between two 
different compartments is described by a rate coefficient. In 
a linear model, these rate coefficients called k are assumed 
to be constant. The concentration in each compartment C 
can be described by the following differential transport 
equations for example for two compartment model 
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distribution bulks. 
Thus for multiple simultaneous processes in a number 

of compartments, a series of coupled differential equations 
is obtained. Since all of these equations are linear, it is easy 
to solute them. 

Non-linear pharmacokinetics are said to exist when the 
parameters are dose- or time-dependent. With dose-
dependence, an increase in the administered dose results 
in a disproportionate increase in the absorbed dose. The 
most common type of dose-dependence discussed in the 
literature follows Michaelis-Menten (M-M) kinetics, where 
the clearance of a drug changes with concentration C due 
to saturation of the drug action site by following equation  

(8) 
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where maxv is maximal velocity of metabolism and mK is 

Michaelis constant. Those parameters are possible 
obtained by experimental way. M-M kinetics is also called 
capacity-limited metabolism, saturable metabolism, or 
mixed-order kinetics. 

References to time-dependent nonlinearity are much 
less frequent, though Levy [7] lists the following possible 
sources: absorption and elimination parameters, systemic 
clearance, enzymatic metabolic activity, plasma binding, 
renal clearance, and cerebrospinal fluid drug concentration. 
Both dose and time dependencies can be present 
simultaneously. 

Because the body is a complex system, the observed 
concentration values are the end product of many intricate 
interactions. In all likelihood, there is one dominant process 
responsible [3].  
 
Practical example - Modeling of Abciximab 
Concentrations in Patients Undergoing Coronary 
Angioplasty 

Abciximab, a monoclonal antibody Fab fragment, was 
the first approved agent in this class of drugs and has been 
shown to prevent acute cardiac ischemic complications 
from percutaneous transluminal coronary angioplasty 
(PTCA) and atherectomy (EPIC Investigators, 1994). 
Typical dosing regimens include a weight-normalized 
intravenous (i.v.) bolus dose of 0.25 mg/kg, followed by an 
i.v. infusion of 0.125 μg/kg/min (up to a maximum of 10 
μg/min) for 12 to 24 hours, depending on the indication. 
Abciximab is a drug with a narrow therapeutic index, with 
serious complications resulting from under treatment (lack 
of antithrombotic effect) or over treatment (e.g. bleeding 
episodes). The standard administration regimen results in 
substantial inter-patient variability in dose concentration and 
concentration-effect relationships. These observations 
suggest a role for the individualization of abciximab 
pharmacotherapy as well as the potential for therapeutic 
drug monitoring, [8]. 

The classical description of abciximab 
pharmacokinetics, including a rapid distribution phase, a 
prolonged terminal phase, and high-affinity binding to its 
pharmacological receptor, is consistent with that of target-
mediated drug disposition, where drug-target interactions 
may impact the pharmacokinetics of the drug in just such a 
manner. The schematic of the model is shown in Fig. 2 and 
the differential equations that define it by [8] are: 
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where C1 and C2 represent drug concentrations (nM) in the 
central (#1) and peripheral (#2) compartments, RT is 
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maximum receptor density (nM), k12, k21 are first order 
distribution constants (h-1), kel is the first order elimination 
rate constant (h-1), V is the volume of both compartments 
(L/kg). The zero-order drug infusion rate (K0) is zero for the 
first study, and a constant value (K0 = 0.158 nmol/kg/hr) 
when time is less than the infusion time (Tinf) for the second 
study (K0 = 0 when time t > Tinf).  

 
Fig.2. Schematic of the pharmacokinetic component of the final 
model for abciximab. It´s infusion (K0, Tinf) is connected to the 
central compartment (C1) and free drug can transfer between the 
peripheral compartment (C2, k12, k21) or be eliminated (kel).  

 
 Based on above the non-linear dynamical state-space 
model of the system can be created 
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and it in discrete form using Euler explicit formula (4) 
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There are simulation results of drug concentrations C1 
and C2 in Fig.3 using MatLab simulation environment for 
three values of RT (40nM, 35nM, 45nM). Initial conditions 
are C1(0) = 0, C2(0) = 0 and time for next infusion is 24 hours. 
The values of parameters used in simulation are defined in 
the Tab.1. by [8]. 

 

 
a) 

 
b) 

Fig.3. Simulation results of time drug concentrations C in the a) 
central (#1) and b) peripheral (#2) compartments for three different 
values of maximum receptor density RT  

 
Tab.1. Estimated abciximab pharmacokinetic parameters [8] 

Parameter (units) Final estimate 
k12 (h

-1) 1.21 
k21 (h

-1) 0.0326 
kel (h

-1) 0.583 
V (L/kg) 0.118 

KD (nmol/kg) 0.0411 
Tinf (h) 24 

 
Similarly it is possible to create this non-linear dynamic 

model in discrete form using Euler implicit formula (5) and 
Taylor expansion method (6) with the same results. 

 
Conclusion 

There are many applications in pharmacokinetic 
described and modelled by non-linear differential equation 
(DE) systems. The solutions of simple example - modelling 
of abciximab concentrations in patients undergoing 
coronary angioplasty was presented with using Euler's 
expansion method for next numerical solution.  
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