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Abstract. Magnetic field nearby fractures of magnetic medium is considered in this paper. Small thickness of fractures requires some kind of special 
treatment, which is a modified version of the boundary integral equation. It is solved then by means of the boundary element method (BEM). 
 
Streszczenie. W pracy rozważa się pole magnetyczne w otoczeniu pęknięć magnetyku. Z uwagi na założoną niewielką grubość pęknięć stosuje się 
graniczną postać równania całkowego, które rozwiązuje się dalej za pomocą metody elementów brzegowych. (Analiza pola magnetycznego w 
otoczeniu pęknięć ośrodka magnetycznego za pomocą MEB). 
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Introduction 

Some real configurations contain thin bodies, like shells, 
fractures, gaps. Numerical analysis of field in neighborhood 
of such structures is usually very troublesome. In FEM, for 
example, a very fine mesh is required. It seems that it could 
be avoided at least in some class of problems, where use of 
BEM would be more suitable. In BEM, however, another 
problem arises – the occurrence of nearly-singular integrals, 
the numerical evaluation of which can be very inaccurate. 
There are at least three different methods of dealing with 
this problem. The first is to use special procedures to 
ensure high accuracy of the calculations, e.g [1]. The 
second method is to modify the boundary integral equation 
(BIE) so that the problem can be omitted [2-6]. Another 
approach is to use a different method, or to predict an 
approximate solution in the thin body [7-8]. 

This paper uses the modified BIE in magnetic field 
analysis nearby non-magnetic fractures in magnetic 
medium. It is based on the model presented in [2], but the 
final approach is different. It is similar to the procedure 
presented in [6]. 

 
Problem description 

Consider a magnetic medium Ω0 with a thin non-
magnetic fracture Ω1 of thickness d (Fig. 1). Let the relative 
permeability of the magnetic medium and the fracture is μr0 
>> 1 and μr1, respectively. The magnetic medium is 
assumed to be linear. Initially, the fracture is considered as 
having boundaries S+ (top) and S− (bottom), but the final 
equations will concern the substitute surface S. In the 
magnetic medium there exists an externally applied 
magnetic field He. In static conditions no currents are 
present and the magnetic field is assumed to have a scalar 
magnetic potential φe such that He = −φe. The aim is find 
out the magnetic field nearby the fracture.  
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Fig.1. Fracture in magnetic medium 

 
Governing equations 

Provided that there are no currents (static magnetic field 
He or non-conductive medium at low frequencies of the 

externally applied field He) one can use the scalar magnetic 
potential such that 
 
(1) φH . 

 
In both regions Ω0 and Ω1, it satisfies the Laplace equation 
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Magnetic field continuity on the boundaries S+ and S− leads 
to the following relationships 
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The externally applied field He can be introduced into the 
solution so that 
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Boundary integral model 

It can be shown that the initial BIE written for point i in 
Ω0 with externally applied field has the following form [9] 
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where G is the fundamental solution for Laplace equation, 
and ∂n0 refers to normal derivative with normal n0 directed 
outwards Ω0. Similar equation can be written for point i 
inside Ω1: 
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If d → 0, then G on S+ as well S− tends to G on S, the same 
for the normal derivatives of G, whereas values of φ(k) as 
well as ∂φ(k)/∂nk can differ much on both sides of S. 
Therefore, the equations become 
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where ∂/∂n refers to the normal derivative of with normal 
vector n oriented from S− to S+ (Fig. 1), and 
 

(9) 
n

φ

n

φ
qΔφφφΔ

kk
kkkk








 



)()(
)()()()( , , 

 
Symbols φ+

(k) and φ−
(k) denote the values of φ in domain Ωk 

at boundaries S+ and S−, respectively. Note that there is no 
φi

(1) in Eq. (8), because the term cancels with the 
singularities that are excluded from the boundary integrals 
for d → 0. When point i lies on boundary, Eq. (7) also has a 
singularity. Its elimination leads to the following equation 
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where ci is the geometric coefficient for point i lying on S (1/2 
for smooth boundary).  

Using relationships (3) in Eq. (8), one obtains 
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where ν = μr1/μr0. The relationship serves to eliminate the 
integral containing Δq(0) in Eq. (10) so that 
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where superscript (0) was omitted. Eq. (12) contains two 
unknown functions, φ+ and φ−. To find them out, an 
additional equation is required. It can be obtained by 
evaluating the gradient of Eq. (12) with respect to 
coordinates of point i, and taking its normal component [2]. 
As a result, ∂niφi appears in the equations. Due to small 
value of d the derivative can be approximated with a linear 
combination of φ+ and φ− as follows: 
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Consequently, the lacking equation becomes 
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Discrete model (BEM) 

Eqs. (12) and (14) can be solved in a BEM-like fashion 
[10-12]. For simplicity, elements with constant 
approximation of potential are used. The final equation 
system can be written as follows: 
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where c is a diagonal matrix with diagonal elements ci, φ+ 
and φ− are vectors of nodal values of φ on S+ and S−, 
respectively, φe and De are vectors of nodal values of φe and 
∂niφe at the boundary nodes, respectively, Ĥ and H͂ are 
matrices the elements of which are 
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Equation system (17) does not contain the normal 

derivative and has half the number of equations present in 
the conventional BEM. Instead, integrals H͂ij appear. One 
disadvantage is, however, that Eq. (13) assumes a constant 
approximation of normal derivative of φ inside the fracture. 
Such an assumption seems to be justified for very small 
values of d. However, one of the consequences of the 
assumption is that the normal components of magnetic flux 
density on S+ and S− are equal. This occurs if the magnetic 
field lines pass the fracture perpendicularly to S+ and S−. 
Such a situation takes place when μr0 >> μr1 (ν → 0). 
Numerical simulations confirm this observation. 

 
Numerical examples 

The computational model was implemented in 
Mathematica 7.0. The first example is a straight fracture of 
length L, perpendicular to a uniform magnetic field (φe = 
H0x). Its thickness is set to d = 0.01L and ν = 0 (μr0 >> μr1). 
The fracture was divided into 20 boundary elements. Fig. 2 
shows the field image, and Fig. 3 shows the values of 
magnetic potential on both sides of the fracture obtained 
with the modified (M) and conventional (C) BEM. The 
results are compared with analytical solution by the 
conformal mapping for d = 0. CBEM and MBEM results are 
similar in this case (due to analytical integration). However, 
numerical tests showed that CBEM fails for very small d, 
even with analytical integration.  

 

 
Fig.2. Magnetic field lines for ν → 0, d = 0.01L (shaded places 
indicate regions of stronger field) 
 

Table 1 shows values of the relative magnetic flux 
through the fracture Φν/Φ1 for different d and ν, where 
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The flux depends roughly only on ratio d/L/ν. 
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Fig.3. Values of scalar magnetic potential for perpendicular fracture 
and ν = 0 – theory, MBEM and CBEM 
 

Fig. 4 shows field images for the straight and 
perpendicular fracture for different ν and constant d = 0.01L.  

 

 

 
Fig.4. Magnetic field lines through straight perpendicular 
fracture (d = 0.01L and different ν) 

 
Table 1. Relative magnetic flux Φν/Φ1 through perpendicular fracture 

 d/L = 0.01 d/L = 0.001 d/L = 0.0001 
ν = 0.1 0.932 0.992 0.999 
ν = 0.01 0.599 0.926 0.991 
ν = 0.001 0.137 0.597 0.925 
ν = 0.0001 0.016 0.137 0.597 
 
The next figures show exemplary field images nearby 

curved fractures (Fig. 5) and a set of straight fractures 
occurring randomly in the magnetic medium (Fig. 6). 
 

 
Fig.5. Magnetic field lines for some curved fractures (d about 0.01 
of fracture length, ν = 0.001) 

 
Fig.6. Magnetic field lines nearby a set of random fractures 
(ν = 0.001, d = 0.01 of fracture length) 

 
Concluding remarks 

The modified BEM allows the thin fractures in magnetic 
media to be modeled easily. When compared to the 
conventional BEM, it has the following advantages: 
 half the number of equations, 
 no nearly singular integrals, 
 the thinner the fracture the better approximation, 
The main disadvantage is that it uses a linear 
approximation for the normal derivatives on the fracture 
surface (see Eq. (13)). Theoretical considerations and 
numerical tests showed that this assumption can be hold if 
either ν << 1, or the fracture is placed perpendicularly to the 
magnetic lines of the externally applied field. Despite this 
limitations the presented model seems to work well in the 
considered class o problems. 
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