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Abstract. The analysis of electroconductive field nearby thin highly conductive bodies is considered in this paper. The model uses the boundary 
element method (BEM), but it simplifies the analysis by using a limiting version of the boundary integral equation. The model can be used in the 
analysis of current density distribution in electrolyte nearby thin electrodes or metallic sheets. 
 
Streszczenie. W artykule rozpatruje się sposób analizy pola przepływowego w pobliżu cienkich dobrze przewodzących warstw. Model wykorzystuje 
metodę elementów brzegowych (MEB), ale upraszcza analizę poprzez zastosowanie granicznej postaci równania całkowo-brzegowego. Można go 
zastosować na przykład do analizy rozkładu gęstości prądu w elektrolicie w otoczeniu cienkich elektrod lub blach. (Zastosowanie MEB do analizy 
pola przepływowego w pobliżu cienkich dobrze przewodzących ciał). 
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Introduction 

Many real configurations contain bodies in the form of 
thin layers, shells or sheets. Examples are external shells of 
cars, planes, submarines, sheet metals, plates, some types 
of electrodes in electrolyte, equipment casings, etc. Such 
bodies are often called “thin bodies”, and can be described 
as those whose one of the dimensions is much smaller than 
the others. Due to complexity of such configurations the 
analysis of electromagnetic field in them usually require a 
use of numerical methods. No matter which numerical 
method is to be used, thin bodies often require a special 
treatment. In FEM, for example, they generate a very fine 
mesh and result in a large system of equations. Since the 
problem is linear, BEM can be also used, especially if the 
domain is theoretically unbounded. In the conventional 
BEM, however, the problem of accuracy in evaluation of so 
called nearly singular integrals appears. It originates from 
the form of the coefficients in the resulting algebraic system 
of equations. They are integrals the integrands of which are 
functions of the negative power of distance between the 
source point and observation point lying in the boundary. If 
the source point is very close to the boundary surface, the 
integrand value changes very rapidly and numerical 
evaluation of such integral can be very inaccurate. This is 
not a problem when the integral can be done analytically, 
but often the integrals can be done only numerically.  

The way out is to transform the governing equations to 
obtain more applicable ones. Some of approaches are 
considered in [1-7]. The proposed method is based on the 
suitably adopted model described in [1, 2]. It uses the 
boundary integral equation (BIE) corresponding to the 
problem, but the thin body, which is assumed to be a good 
conductor, is replaced by a single surface (line in 2D case). 
This allows simplifying considerably the resulting equation 
and eliminates the nearly singular integrals. In addition, the 
number of equations in the final system of algebraic 
equations is reduced. 

 
Problem description and the governing equations 

A thin plate Ω1, of thickness d, is placed in conductive 
medium Ω0 (Fig. 1). The conductivity of the medium and the 
plate equals γ0 and γ1, respectively, with the additional 
assumption γ1 >> γ0. This case corresponds to metallic 
plates placed in conductive medium, for example. Other 
cases, e.g. γ1 << γ0, can be also taken into account, e.g. in 
[5, 7]. The assumptions allow the subsequent equations to 
be simplified considerably. The whole configuration is 
affected by an externally applied static electric field Es. 

 
 
 
 
 
 
 
 
 
 

Fig.1. Thin plate in conductive medium 
 
Initially, the thin plate is modelled as a conventional 

body with its boundary surface consisting of surfaces S+ and 
S–, but the final equations will be formulated for a 
substitutive surface S. 

The scalar potential V satisfies the Laplace equation in 
domain Ω0 
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Since the plate is assumed to be highly conductive, its 
potential is approximately constant and equal U so that 
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The externally applied field Es has potential Vs (i.e. Es = 
−Vs), and far from the plate, which disturbs the Es field, 
potential V should be equal Vs: 
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In this model U can be known or not. If it is known, no 
further equations are required to obtain the solution. If U is 
unknown, however, one more equation is needed. It can be 
provided by the equation of continuity of current, which 
yields 

(4) 
0

dd
γ

I
S

n

V
S

n

V

SS













, 

where I is the current provided into the plate by external 
agents. For example, if the plate is an electrode, it 
introduces current I into the conductive medium Ω0. The 
current is negative, if the plate gathers the current from the 
medium. For a free plate, one should assume I = 0, and the 
value of U is to be found. For 2D problems I is the current 
per unit of length of the electrode. 
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The BIE corresponding to Eqs. (1)-(3) written for point i 
lying in domain Ω0 is as follows: 
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where Vi − the value of V at point i, Vsi – the value of Vs at 
point i, and G is the fundamental solution for the Laplace 
equation. Two facts are worth noting: (i) there is no integral 
with V∂G/∂n, because it vanishes due to condition (2); (ii) 
signs of the integrals of G∂V/∂n come form the inner 
direction of normal vectors n+ and n−. It can be shown that 
Eq. (5) is correct also for point i lying on the boundary of the 
plate. 

 
Conventional BEM model (CBEM) 

Eqs. (5) and (4) can be solved by means of BEM. If 
each of boundaries S+ and S– is divided into N zero-order 
boundary elements, then a total of 2N + 1 equations will be 
obtained. Assuming known I, the equations are as follows: 

(6) 

































































0

s

s

/0 γIU

V

V

Q

Q

ss

1GG

1GG

, 

where Gkl – G-type BEM matrix corresponding to points i on 
boundary Sk and boundary elements on boundary Sl, Qk and 
Vsk – column vectors of values of ∂V/∂nk and Vs in nodes on 
boundary Sk, respectively, sk − row vectors of lengths of 
boundary elements on boundary Sk, 1 – column vector of N 
ones. Elements of matrices Gkl are integrals 
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Although Eq. (6) is mathematically correct, during 
numerical evaluation two problems arise for thin enough 
plate: (i) some of integrals (7) become nearly singular, and 
therefore, hard for numerical evaluation with sufficient 
accuracy (e.g. for curved boundary elements); (ii) the 
system of equations becomes badly conditioned, because 
all four matrices Gkl are almost the same. Numerical tests 
confirm that the model crashes for sufficiently small d. 

 
Modified BIE and its BEM model (MBEM) 

If d → 0, boundary S+ → S, and S– → S, too, but it does 
not mean that ∂V/∂n+ and ∂V/∂n– become the same (with the 
opposite sign). In fact, the values can differ much on both 
sides of the plate. All we can do is to use a substitute 
surface S instead of real plate with surfaces S+ and S–, and 
then make the following approximations: 
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As for the fundamental solution G, it depends only on the 
distance between the observation and source points, and 
therefore for d → 0  
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Inserting Eqs. (8) and (9) into Eq. (5) yields the following 
modified BIE 
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In such a way the real plate has been led to a substitute 
surface S. Eqs. (11) and (4) can be solved by means of 
BEM. If surface S is divided into N zero-order boundary 
elements, then a total of N + 1 equations will be obtained as 
follows: 
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On the other hand, if U is known, then the system of 
equations takes the following form: 
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In both cases the main problems with small value of d have 
been removed. In addition, the discretization is required 
only to the substitutive surface, what results in easier 
preprocessing as well as in smaller system of equations in 
comparison to the conventional model given by Eq. (6). Its 
disadvantage is that it uses approximations valid for d → 0 
and γ1 → ∞. 
 
Generalizations 

The proposed model can be easily extended and 
generalized. Possible generalizations are: 
- multiple highly conductive plates, 
- including low conductive plates, like fractures and gaps, 

according to the model presented in [7], 
- building a mixed body problem model, with non-thin 

bodies treated conventionally, 
- formulation for bounded regions, 
- analysis of other fields. 

As for the last point, the model should be appropriate for 
any field F described by equations: 

(14) 0)(,,0  FFF pV , 

where p is the material coefficient. Some exemplary fields 
are shown in Table 1. 

 
Table 1. Examples of configurations for which the presented model can be used 

Case F field V field p parameter U value I value
Perfect conductor in 

electroconductive field 
Electric field 

intensity 
Scalar electric 

potential 
Electrical 

conductivity 
Scalar electric 

potential of the plate 
Total current from 

the plate 
Conductor in 

electrostatic field 
Electric field 

intensity 
Scalar electric 

potential 
Relative 

permittivity 
Scalar electric  

potential of the plate 
Total charge on the 

plate 
Highly permeable plate 
in static magnetic field 

Magnetic field 
intensity 

Scalar magnetic 
potential 

Relative 
permeability 

Scalar magnetic 
potential of the plate 

Total magnetic flux 
form the plate (0) 

Heat conductor in static 
temperature field 

Negative gradient 
of temperature 

Temperature 
Thermal 

conductivity 
Temperature of the 

plate 
Total heat flux from 

the plate 
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Numerical examples 
The presented model was implemented in Mathematica 

7.0 and tested on several benchmark problems. The first 
one is a long flat highly conductive thin bar placed in an 
externally applied uniform electric field. This problem has an 
exact solution which can be found by means of conformal 
mapping. Fig. 2 shows the plot of distribution of Δq along 
the cross-section. The MBEM gives quite accurate results, 
except for the endpoints. The CBEM model gives almost 
the same results as MBEM, but it crashes for very small d. 
Fig. 3 shows the field image found be MBEM. 
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Fig.2. Values of Δq for flat conductive bar in uniform electric field 

 

 
Fig.3. Field image for flat conductive bar in uniform electric field 
(cross-section of upper half) 

 
The second benchmark problem is the same bar of 

known potential placed in conductive medium without 
externally applied electric field (Fig. 4 and 5). Again the 
conformal mapping allows finding the exact solution. The 
results are similar to those of the first example. 
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Fig.4. Values of Δq for flat conductive bar with given potential 

 

 
Fig.5. Field image for flat conductive bar with given potential (upper 
half cross-section) 

The last example shows two electrodes in electrolyte. 
The field image (MBEM) is shown in Fig. 6.  

 

 
Fig.6. Field image for two long and thin electrodes in electrolyte 
(cross-section) 

 
Concluding remarks 

An approximate method of analysis of electroconductive 
field nearby thin highly conductive bodies was presented. 
The model can be easy adapted for other static fields, e.g. 
for thin conductive bodies in electrostatic field, or thin 
magnetic bodies in static magnetic field. When compared to 
the conventional BEM approach, it has the following 
advantages: 
- no nearly singular integrals (for sufficiently regular shapes 

of the thin bodies), 
- avoiding the crash due to badly conditioned CBEM matrix 

for very thin bodies, 
- smaller system of equations resulting in much faster 

computations. 
The model can be generalized to obtain a broader class 

of problems, i.e. multiple thin bodies, thin bodies of low 
conductivity. 
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