Acoustic noise emissions caused by the transformer in a DC/DC converter for welding applications

Abstract. This paper focuses on acoustic noise emissions caused by the transformer that operates as a part of DC/DC converter installed in a resistance spot welding system (RSWS). The discussed RSWS contains a three-phase input rectifier, an inverter, and an iron core welding transformer with one primary and two secondary windings and two output rectifier diodes connected to the transformer’s secondary windings. In the case study, two different methods are applied to generate the inverter output voltage, which supplies the transformer’s primary winding. Considering possible origins of acoustic noise emission in the discussed transformer and based on performed simulations and measurements, the paper explains while the two applied voltage generation methods influence the acoustic noise emissions caused by the transformer differently.

Introduction

Generally, electromagnetic devices supplied by varying currents emit acoustic noise. If the impacts on human health are not discussed, the acoustic noise emissions caused by the electromagnetic devices could be found in the range from imperceptible to annoying and even distracting. In order to keep the acoustic noise emissions caused by an electromagnetic device in an acceptable range, the origin of acoustic noise must be known.

This paper deals with the acoustic noise emission caused by the welding transformer, operating as a part of DC/DC converter in a resistance spot welding system (RSWS). Generally, the acoustic noise produced by a transformer can originate from the winding vibrations, from the iron core vibrations or from both of them [1]. The winding vibration can be caused by periodical mutual forces acting on current-carrying conductors. Vibration of the entire iron core is often provoked by magnetostriction while vibration of the iron core pieces can appear due to periodically-changing magneto motive forces acting across the air gaps. According to [2], the magnetostriction can be described as the change in length or shape of ferromagnetic material under magnetization.

The authors in [3] deal with different numerical models for the calculation of vibrations in iron cores. The impact of magnetostriction on the acoustic noise emissions caused by the iron cores of transformers is evaluated in [4]. The authors in [5] use measurement to evaluate vibrations and acoustic noise emissions, caused by the iron core of a three-phase three-limb transformer supplied by sinusoidal and pulse width modulation (PWM) generated voltages. The method application, calculation of nodal forces and vibration analysis are applied in [6] to evaluate the acoustic noise emissions caused by an inverter driven single-phase inductor. The development of a ultra-low-noise transformer technology, based on the calculation and measurements of iron core resonant frequencies, frequency spectrum of iron core noise, and load noise, is presented in [7].

The analysis of discussed RSWS performed in [8] has shown, that even under normal operating conditions, the transformer’s iron core can become saturated due to the unbalances in both loops with secondary windings and differences in characteristics of output rectifier diodes. It was shown that the iron core saturation can lead to the pretty high current spikes in the primary current of the transformer, which finally cause the overcurrent protection switch-off of the entire system. Two different methods, which can be used for active prevention of transformer’s iron core form becoming saturated, are discussed in [9]. Both methods require closed-loop control of the welding current and iron core flux density. The first method uses two proportional–integral (PI) controllers to control the welding current and the DC component of iron core flux density in the closed-loop, while a modified pulse-width-modulation (PWM) is used to generate the H-bridge inverter output voltage. The second method uses two synchronously operating hysteresis controllers to simultaneously closed-loop control the welding current and the saturation level in the iron core, and to generate the H-bridge inverter output voltages [10,11]. During the testing of methods and corresponding control scheme introduced in [9,10,11], it became evident that the control scheme [10] not only improves utilization of the iron core and prevent it from becoming saturated, but also substantially reduces the acoustic noise emissions caused by the transformer. The reasons for reduction of acoustic noise emission are analysed in this paper.
System description

Individual components of the discussed RSWS, shown in Fig. 1, were described in the previous section. Let us focus on the welding transformer and RSWS dynamic model. The transformer has one primary winding and two secondary windings denoted with indices 1, 2 and 3, respectively. Thus, \(R_1, R_2 \) and \(R_3 \) are the resistances; \(L_{n1}, L_{n2} \) and \(L_{n3} \) are the leakage inductances; \(N_1, N_2 \) and \(N_3 \) are the numbers of turns, while \(i_1, i_2 \) and \(i_3 \) are the currents, of the three windings. The voltage balances in individual windings are described by (1) to (3), while (4) describes magnetic balances in the iron core:

\[
\begin{align*}
(1) \quad u_1 &= R_1 i_1 + L_{n1} \frac{di_1}{dt} + N_1 S_{Fe} \frac{dB}{dt} \\
(2) \quad N_2 S_{Fe} \frac{dB}{dt} &= -R_2 i_2 - L_{n2} \frac{di_2}{dt} + D_1 (i_2) \\
N_3 S_{Fe} \frac{dB}{dt} &= -R_3 i_3 + L_{n3} \frac{di_3}{dt} + D_2 (i_3) \\
(3) \quad N_1 i_1 + N_2 i_2 - N_3 i_3 &= H(B) l + \frac{B}{\mu_0} 2 \delta
\end{align*}
\]

where \(S_{Fe} \) is the cross-section of the iron core, \(l \) is the average length of the magnetic path in the iron core, \(\delta \) is the air gap along the magnetic path inside the iron core consisting of two C-shaped halves, \(\mu_0 \) is the permeability of vacuum, \(H \) is the magnetic field strength, \(B \) is the magnetic flux density, \(H(B) \) is the characteristic describing magnetically nonlinear behaviour of the iron core, while \(D_1 (i_2) \) and \(D_2 (i_3) \) are the nonlinear characteristic of the output rectifier diodes \(D_1 \) and \(D_2 \), shown in Fig.1.

The supply voltage of the transformer \(u_{\text{in}} \) is generated by switching-on and -off H-bridge inverter transistor pairs \(S_1-S_2 \) and \(S_3-S_4 \), is generated. The transistor pair \(S_1-S_2 \) is switched-on and -off for the time \(t \in [0, T/2] \), while for the time \(t \in [T/2, T] \) the transistor pair \(S_3-S_4 \) is switched-on and -off. The voltage \(\Delta U \) influences the RMS value of \(u_{\text{in}} \) while the voltage \(\Delta U \) influences its dc component.

Control method I: PI controllers and PWM

The welding current \(i_1 \) is controlled with the root mean square (RMS) value of the supply voltage \(u_{\text{in}} \), while the dc component of the iron core flux density is controlled by the dc component of \(u_{\text{in}} \) [11]. The differences between the reference and measured values are used to closed-loop control the welding current and dc component of the iron core flux density by two PI controllers. The output of the welding current PI controller is \(U_{\text{ref}} \), while the output of the iron core flux density dc component controller is \(\Delta U \). The output voltage of H-bridge inverter \(u_{\text{in}} \) is PWM generated as shown in Fig. 2, while \(T_p \) denotes one cycle of modulation. Fig. 2 shows how the voltages \(U_{\text{ref}} \) and \(\Delta U \) are combined in the reference voltage \(u_{\text{ref}} \). After it is comparison with the carrier signal \(u_\text{ref} \), the control signals \(u_{\text{in}} \), that switches-on and -off H-bridge inverter transistor pairs \(S_1-S_2 \) and \(S_3-S_4 \), is generated. The transistor pair \(S_1-S_2 \) is switched-on and -off for the time \(t \in [0, T/2] \), while for the time \(t \in [T/2, T] \) the transistor pair \(S_3-S_4 \) is switched-on and -off. The voltage \(U_{\text{ref}} \) influences the RMS value of \(u_{\text{in}} \) while the voltage \(\Delta U \) influences its dc component.

Control method II: Advanced hysteresis control

For constant DC-bus voltage \(U_{\text{DC}} \), the H-bridge inverter output voltage \(u_{\text{in}}=U_{\text{DC}} \) when the transistor pair \(S_1-S_4 \) is switched-on and \(u_{\text{in}}=U_{\text{DC}} \) when the transistor pair \(S_3-S_2 \) is switched-on. The iron core flux density \(B \) increases for \(u_{\text{in}}=U_{\text{DC}} \) and decreases for \(u_{\text{in}}=U_{\text{DC}} \). The welding current \(i_1 \) increases when \(u_{\text{in}} \neq 0 \) and decreases when \(u_{\text{in}}=0 \). The applied control method II is schematically shown in Fig. 3 and described in [9-11].
where the iron core starts to become saturated. The flux density controller changes the polarity of u_H when B exceeds the lower or upper bounds while the welding current controller switches the voltage u_H off when i_L exceeds the upper bound I_M and it switches it on again when i_L drops under the lower bound I_m.

Results

Figs. 4 show the time behaviours of i_L, i_1 and B, as well as their amplitude spectra, given as functions of the harmonic component h, calculated by the model (1)-(4), in the case of control method I.

Similarly, Figs. 5 show the time behaviours of i_L, i_1 and B, as well as their amplitude spectra, calculated by the model (1)-(4), in the case of control method II. The amplitude spectra of SPL measured on the actual RSWS, where the control methods I and II were applied, are shown in Fig. 6.

The results presented in Figs. 4 to 6 clearly show, that in the case of control method I, the primary current i_1 and the iron flux density B have strong spectral lines at the same frequency of 1.3 kHz, which results in the strong spectral line in the sound pressure level SPL at 2.6 kHz. It could be concluded that in this case the acoustic noise emissions are caused by the vibrations of the primary winding and individual pieces of the iron core, which all together produce really annoying noise.
In the case of control method II, the spectral lines in the primary current and iron core flux density are less strong and they are not limited on only one or two dominant frequencies only. The amplitude spectra are more flat, which leads also to the SPL amplitude spectrum without strongly expressed individual spectral lines. The result is much less annoying noise produced by the welding transformer.

Conclusion

This paper deals with acoustic noise emissions caused by a welding transformer operating as a part of resistance spot welding system. The results of simulations and measurements have shown that the control method II causes much more dispersed amplitude spectra in the primary current and in the iron core flux density, which finally leads also to the dispersed SPL amplitude spectra and lower and less annoying acoustic noise emissions. On the contrary, the control method I causes only one really strong spectral lines in the primary current and in the iron core flux density, which appear at the same frequency. This results in a strong spectral line in the SPL amplitude spectrum at doubled frequency, which results in strong and extremely annoying acoustic noise emissions.

REFERENCES

Authors

Prof. dr. Gorazd Štumberger, univ. dipl. inž. el., University of Maribor, Faculty of electrical engineering and computer science, Smetanova ulica 17, 2000 Maribor, Slovenia, E-mail: gorazd.stumberger@uni-mb.si;
Assistant prof. dr. Klemen Deželak, univ. dipl. inž. el., University of Maribor, Faculty of electrical engineering and computer science, Smetanova ulica 17, 2000 Maribor, Slovenia, E-mail: klemen.dezelak@uni-mb.si;
Dr. Beno Klopičič, univ. dipl. inž. el., Indramat elektromotorj d.o.o., Kladrbova cesta 81, 4220 Škofja Loka, Slovenia, E-mail: beno.klopicic@boschrexroth.si;
Prof. dr. Drago Dolinar, univ. dipl. inž. el., University of Maribor, Faculty of electrical engineering and computer science, Smetanova ulica 17, 2000 Maribor, Slovenia, E-mail: dolinar@uni-mb.si;